forked from zkbt/zachopy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoned.py
614 lines (489 loc) · 18.5 KB
/
oned.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
'''Tools for dealing with 1D arrays, particularly timeseries and spectra.'''
import matplotlib.pyplot as plt, numpy as np
import scipy.interpolate, scipy.stats
from astropy.modeling.models import Gaussian1D
from astropy.modeling.fitting import LevMarLSQFitter
# ignore divide errors
np.seterr(divide='ignore')
def minmax(x):
'''Return tuple of the (finite) max and min of an array.'''
return np.nanmin(x), np.nanmax(x)
def mad(x):
'''
Returns the median absolute deviation from the median,
a robust estimator of a distribution's width.
For a Gaussian distribution, sigma~1.48*MAD.
'''
med = np.median(x)
return np.median(np.abs(x - med))
def binto(x=None, y=None, yuncertainty=None,
binwidth=0.01,
test=False,
robust=True,
sem=True,
verbose=False):
'''Bin a timeseries to a given binwidth,
returning both the mean and standard deviation
(or median and approximate robust scatter).'''
if test:
n = 1000
x, y = np.arange(n), np.random.randn(n) - np.arange(n)*0.01 + 5
bx, by, be = binto(x, y, binwidth=20)
plt.figure('test of zachopy.binto')
plt.cla()
plt.plot(x, y, linewidth=0, markersize=4, alpha=0.3, marker='.', color='gray')
plt.errorbar(bx, by, be, linewidth=0, elinewidth=2, capthick=2, markersize=10, alpha=0.5, marker='.', color='blue')
return
min, max = np.min(x), np.max(x)
bins = np.arange(min, max+binwidth, binwidth)
count, edges = np.histogram(x, bins=bins)
sum, edges = np.histogram(x, bins=bins, weights=y)
if yuncertainty is not None:
count, edges = np.histogram(x, bins=bins)
numerator, edges = np.histogram(x, bins=bins, weights=y/yuncertainty**2)
denominator, edges = np.histogram(x, bins=bins, weights=1.0/yuncertainty**2)
mean = numerator/denominator
std = np.sqrt(1.0/denominator)
error = std
if False:
for i in range(len(bins)-1):
print bins[i], mean[i], error[i], count[i]
a = raw_input('???')
else:
if robust:
n= len(sum)
mean, std = np.zeros(n) + np.nan, np.zeros(n) + np.nan
for i in range(n):
inbin = (x>edges[i])*(x<=edges[i+1])
mean[i] = np.median(y[inbin])
std[i] = 1.48*mad(y[inbin])
else:
if yuncertainty is None:
mean = sum.astype(np.float)/count
sumofsquares, edges = np.histogram(x, bins=bins, weights=y**2)
std = np.sqrt(sumofsquares.astype(np.float)/count - mean**2)*np.sqrt(count.astype(np.float)/np.maximum(count-1.0, 1.0))
if sem:
error = std/np.sqrt(count)
else:
error = std
x = 0.5*(edges[1:] + edges[:-1])
return x, mean, error
if yuncertainty is not None:
print "Uh-oh, the yuncertainty feature hasn't be finished yet."
if robust:
print "Hmmm...the robust binning feature isn't finished yet."
def mediansmooth(x, y, xsmooth=0):
'''
smooth a (not necessarily evenly sampled) timeseries
x = the independent variable
y = the dependent variable
xsmooth = the *half-width* of the smoothing box
'''
assert(x.shape == y.shape)
ysmoothed = np.zeros_like(x)
for i, center in enumerate(x):
relevant = np.abs(x - center) <= xsmooth
ysmoothed[i] = np.median(y[relevant])
return ysmoothed
def peaks( x, y,
plot=False,
xsmooth=30,
threshold=100,
edgebuffer=10,
widthguess=1,
maskwidth=3,
returnfiltered=False):
'''Return the significant peaks in a 1D array.
required:
x, y = two 1D arrays
optional:
plot # should we show a plot?
xsmooth # half-width for median smoothing
threshold # how many MADs above background for peaks?
edgebuffer # reject peaks with this distance of an edge
widthguess # about how wide will the peaks be?
maskwidth # peak fits use x's within (maskwidth)*(widthguess)
If returnfiltered==True, then will return filtered arrays:
(xPeaks, yPeaks, xfiltered, yfiltered).
If returnfiltered==False, then only returns the peaks:
(xPeaks, yPeaks)
'''
# calculate a smoothed version of the curve
smoothed = mediansmooth(x, y, xsmooth=xsmooth)
filtered = (y - smoothed)
# calculate the mad of the whole thing
mad = np.median(np.abs(filtered))
# normalize the filtered timeseries
filtered /=mad
# calculate the derivatives
derivatives = (filtered[1:] - filtered[:-1])/(x[1:] - x[:-1])
# estimate peaks as zero crossings
guesses = np.zeros_like(x).astype(np.bool)
guesses[1:-1] = (derivatives[:-1] > 0) * (derivatives[1:] <= 0)
# make sue the peak is high enough to be interesting
guesses *= filtered > threshold
# make sure the peak isn't too close to an edge
guesses *= (x > np.min(x) + edgebuffer)*(x < np.max(x) - edgebuffer)
if plot:
# turn on interactive plotting
plt.ion()
# create a figure and gridspec
fi = plt.figure('peak finding')
gs = plt.matplotlib.gridspec.GridSpec(2,1, hspace=0.03)
# create axes for two kinds of plots
ax_raw = plt.subplot(gs[0])
plt.setp(ax_raw.get_xticklabels(), visible=False)
ax_filtered = plt.subplot(gs[1], sharex=ax_raw)
# plot the input vector
kw = dict(alpha=1, color='gray', linewidth=1)
ax_raw.plot(x, y, **kw)
ax_filtered.plot(x, filtered, **kw)
# plot the threshold
kw = dict(alpha=0.5, color='royalblue', linewidth=1)
ax_raw.plot(x, threshold*mad + smoothed, **kw)
ax_filtered.plot(x, threshold + np.zeros_like(x), **kw)
# set the scale
ax_raw.set_yscale('log')
ax_filtered.set_yscale('log')
ax_filtered.set_ylim(mad, np.max(filtered))
# plot the peak guesses
markerkw = dict( marker='o', markersize=6,
color='none', markeredgecolor='tomato',
alpha=0.5)
ax_raw.plot(x[guesses], y[guesses], **markerkw)
ax_filtered.plot(x[guesses], filtered[guesses], **markerkw)
# create an empty plot object for showing the fits in progress
fitplotter = ax_filtered.plot([],[],
alpha=0.5, color='red', linewidth=1)[0]
plt.draw()
a = raw_input("how 'bout them peaks?")
# create empty lists of peaks
xPeaks, yPeaks = [],[]
# create a fitter object
fitter = LevMarLSQFitter()
for g in np.nonzero(guesses)[0]:
# initialize an approximate Gaussian
gauss = Gaussian1D( mean=x[g],
amplitude=filtered[g],
stddev=widthguess)
# which points are relevant to this fit?
mask = np.abs(x - x[g]) <= maskwidth*widthguess
# use LM to fit the peak position and width
fit = fitter(gauss, x[mask], filtered[mask])
# store the peak values
distancemoved = np.abs((fit.mean.value - x[g])/fit.stddev.value)
if distancemoved <= 3.0:
xPeaks.append(fit.mean.value)
yPeaks.append(fit.amplitude.value)
if plot:
# update the Gaussian's parameters, and plot it
gauss.parameters = fit.parameters
xfine = np.linspace(*minmax(x[mask]), num=50)
fitplotter.set_data(xfine, gauss(xfine))
# plot the fitted peak
markerkw['color'] = markerkw['markeredgecolor']
markerkw['alpha'] = 1
ax_filtered.plot(xPeaks[-1], yPeaks[-1], **markerkw)
# set the xlimits
#ax_filtered.set_xlim(*minmax(x[mask]))
plt.draw()
a = raw_input(' and this one in particular?')
if returnfiltered:
return np.array(xPeaks), np.array(yPeaks), x, filtered
else:
return np.array(xPeaks), np.array(yPeaks)
'''a = raw_input('?')
# start at the highest point
highest = np.nonzero(filtered*mask == np.nanmax(filtered*mask))[0]
highest = np.where(y*mask == np.nanmax((y*mask)))[0]
highest = highest[0]
#print highest, highest.shape
while (y*mask)[highest] > threshold*mad:
g1 = astropy.modeling.models.Gaussian1D(amplitude=y[highest], mean=x[highest], stddev=1.0)
xtomask = (g1.mean + np.arange(-g1.stddev.value*maskwidth, g1.stddev.value*maskwidth))
toMask = np.interp(xtomask, x, np.arange(len(x))).astype(int)
toMask = toMask[toMask < len(x)]
toMask = toMask[toMask >= 0]
if len(toMask) > 0:
gfitter = astropy.modeling.fitting.LevMarLSQFitter()
fit = gfitter(g1, x[toMask], y[toMask])
#print g1
if g1.stddev.value < 5:
xPeaks.append(fit.mean.value)
yPeaks.append(fit.amplitude.value)
if plot:
ax[0].plot(x[toMask], g1(x[toMask]))
ax[1].plot(x[toMask], g1(x[toMask]))
mask[toMask] = 0.0
highest = np.where(y*mask == np.nanmax(y*mask))[0]
highest=highest[0]
if plot:
ax[0].scatter(xPeaks, yPeaks)
ax[1].scatter(xPeaks, yPeaks)
a = raw_input('what do you think of this peakfinding?')
return np.array(xPeaks), np.array(yPeaks)'''
def subtractContinuum(s, n=3, plot=False):
'''Take a 1D array, use spline to subtract off continuum.
subtractContinuum(s, n=3)
required:
s = the array
optional:
n = 3, the number of spline points to use
'''
x = np.arange(len(s))
points = (np.arange(n)+1)*len(s)/(n+1)
spline = scipy.interpolate.LSQUnivariateSpline(x,s,points)
if plot:
plt.ion()
plt.figure()
plt.plot(x, s)
plt.plot(x, spline(x), linewidth=5, alpha=0.5)
return s - spline(x)
def binsizes(x):
'''If x is an array of bin centers, calculate what their sizes are.
(assumes outermost bins are same size as their neighbors)'''
binsize = np.zeros_like(x)
binsize[0:-1] = (x[1:] - x[0:-1])
binsize[-1] = binsize[-2]
return binsize
def supersample(xin=None, yin=None, xout=None, demo=False, visualize=False, slow=True):
'''Super-sample an array onto a denser array, using nearest neighbor interpolation, handling edges of pixels properly.
(should be flux-preserving)
xin = input array of coordinates
yin = input array of values
xout = output array of coordinates where you would like values.
| xin[1:] - x[0:-1] must always be bigger than the largest spacing of the supersampled array |
| assumes coordinates are the center edge of bins, for both xin and xout |'''
# maybe I could make this faster using np.histogram?
if demo:
visualize=True
n = 10
xin = np.arange(n)
yin = np.random.random(n) + xin
nout = (20+ np.random.random())*n
xout = np.linspace(xin.min()-2, xin.max()+2, nout)
assert(xin is not None)
assert(yin is not None)
assert(xout is not None)
xinbinsize = binsizes(xin)
xinleft = xin - xinbinsize/2.0
xinright = xin +xinbinsize/2.0
xoutbinsize = binsizes(xout)
xoutleft = xout - xoutbinsize/2.0
xoutright = xout + xoutbinsize/2.0
if slow:
yout = np.zeros_like(xout).astype(np.float)
for out in range(len(xout)):
try:
inleft = (xinleft <= xoutleft[out]).nonzero()[0].max()
except:
inleft = 0
try:
inright = (xinright >= xoutright[out]).nonzero()[0].min()
except:
inright = -1
leftweight = (np.minimum(xinright[inleft], xoutright[out]) - xoutleft[out])/(xinright[inleft] - xinleft[inleft])
rightweight = (xoutright[out] - np.maximum(xinleft[inright],xoutleft[out]))/(xinright[inright] - xinleft[inright])*(inright != inleft)
yout[out] = (leftweight*yin[inleft] + rightweight*yin[inright])/(leftweight + rightweight)
#if renormalize:
# yout[out] *= (0.5*xinbinsize[inleft] + 0.5*xinbinsize[inright])/xoutbinsize[out]
#print "{0:4f} to {1:4f} = {2:6f}x{3:6f} + {4:6f}x{5:6f}".format(xoutleft[out], xoutright[out], leftweight, xin[inleft], rightweight, xin[inright])
yout[xoutright > xinright.max()] = 0
yout[xoutleft < xinleft.min()] = 0
else:
ones = np.ones((len(xin), len(xout)))
# set up the input arrays
sh = (len(xin),1)
matrix_xinleft = ones*xinleft.reshape(sh)
matrix_xinright = ones*xinright.reshape(sh)
matrix_xinbinsize = ones*xinbinsize.reshape(sh)
matrix_yin = ones*yin.reshape(sh)
# set up temporary output arrays
matrix_xoutleft = xoutleft*ones
matrix_xoutright = xoutright*ones
mask_left = (matrix_xinleft <= matrix_xoutleft) & (matrix_xinleft + matrix_xinbinsize >= matrix_xoutleft)
mask_right = (matrix_xinleft <= matrix_xoutright) & (matrix_xinleft + matrix_xinbinsize >= matrix_xoutright)
leftweight = (np.minimum(matrix_xinright, matrix_xoutright) - matrix_xoutleft)/matrix_xinbinsize*mask_left
rightweight = (matrix_xoutright - np.maximum(matrix_xinleft,matrix_xoutleft))/matrix_xinbinsize*mask_right
yout = np.sum((leftweight*matrix_yin+ rightweight*matrix_yin),0)/np.sum(leftweight + rightweight,0)
'''ones = np.ones((len(xin), len(xout)))
matrix_xout = xout*ones
matrix_xoutbin = binsizes(xout)*ones
matrix_yin = ones*yin.reshape((len(xin),1))
matrix_left = ones*xinleft.reshape((len(xin),1))
matrix_right = ones*xinright.reshape((len(xin),1))
rightweight = (matrix_right - matrix_xout)/matrix_xoutbin
rightweight *= (matrix_right - matrix_xout < 1) * (matrix_xout - matrix_left >= 0)
print rightweight
print
leftweight = (matrix_xout - matrix_left)/matrix_xoutbin
leftweight *= (matrix_right - matrix_xout< 1) * (matrix_xout - matrix_left >= 0)
print leftweight
print
print leftweight + rightweight
#matrix_yout = matrix_yin[0:-1,:]*rightweight[0:-1,:] + matrix_yin[1:None,:]*leftweight[0:-1,:]
matrix_yout = matrix_yin[0:-1,:]*leftweight[0:-1,:] + matrix_yin[1:None,:]*rightweight[1:None,:]'''
#yout = np.sum(matrix_yout, 0)
if visualize:
plt.cla()
plot_xin = np.vstack((xinleft,xinright)).reshape((-1,),order='F')
plot_yin = np.vstack((yin,yin)).reshape((-1,),order='F')
plt.plot(plot_xin, plot_yin, alpha=0.5, linewidth=3, color='black')
badinterpolation = scipy.interpolate.interp1d(xin, yin, kind='linear', bounds_error=False, fill_value=0.0)
plt.plot(xout, badinterpolation(xout), color='red', alpha=0.2, linewidth=2)
plot_xout = np.vstack((xoutleft,xoutright)).reshape((-1,),order='F')
plot_yout = np.vstack((yout,yout)).reshape((-1,),order='F')
plt.plot(plot_xout, plot_yout, color='orange', alpha=0.7, linewidth=4, markersize=10)
plt.plot(xout, yout, color='orange', alpha=0.7, linewidth=0, markersize=20)
a = raw_input('okay?')
return yout
def plothistogram( y, nbins=None, binwidth=0.1, ax=plt.gca(), expectation=None, scale='linear', nsigma=5, **kwargs):
if nbins is not None:
binwidth = (np.max(y) - np.min(y))/nbins
if expectation is not None:
mean = expectation[0]
width = expectation[1]
min = mean - nsigma*width
max = mean + nsigma*width
else:
pad = 3
min = np.min(y)-pad*binwidth
max = np.max(y)+pad*binwidth
yhist, edges = np.histogram(y, bins=np.arange(min, max, binwidth))
if len(edges) == 1:
return
if np.max(yhist) == 0:
return
normalization = (len(y)+0.0)/nsigma
yhist = np.array(yhist).astype(float)/ normalization
xhist = (edges[1:] + edges[0:-1])/2.0
# if given an expectation, plot it as a histogram
if expectation is not None:
g = scipy.stats.norm(mean, width)
n = len(y)
exhist = np.zeros(len(xhist))
for i in range(len(xhist)):
start = xhist[i] - binwidth/2.0
finish = xhist[i] + binwidth/2.0
exhist[i] = n*(g.cdf(finish) - g.cdf(start))
bottom = np.maximum(exhist - np.sqrt(exhist), 0)/normalization
top = (exhist + np.sqrt(exhist))/normalization
ax.fill_betweenx(xhist, bottom, top, color='gray', alpha=0.5, linewidth=4)
ax.plot(top, xhist, color='gray', alpha=0.5, linewidth=4)
ax.plot(np.maximum(yhist, 0.000001/normalization), xhist, **kwargs)
if scale == 'log':
ax.set_xscale('log')
ax.set_xlim(0.9/normalization, np.max(exhist/normalization)*1.3)
if scale == 'linear':
ax.set_xscale('linear')
ax.set_xlim(0, np.max(exhist/normalization)*1.3)
#ax.set_ylim(min, max)
#ax.set_xticks([])
#ax.set_yticks([])
#print "HISTOGRAMMING!"
#print xhist
#print yhist
#print exhist/normalization
#assert(False)
def binnedrms(y):
'''Calculate the (unweighted) binned RMS of an array.'''
# define a dummy x variable
x = np.arange(len(y))
n = np.arange(1,len(y)/3)
rms = np.zeros(len(n))
for i in range(len(n)):
binned = np.histogram(x, bins=np.arange(len(x)/n[i])*n[i], weights=y)[0]/n[i]
#print binned
rms[i] = np.std(binned)
#print n[i], rms[i]
return n, rms
def plotbinnedrms(y, ax=None, xunit=1, scale='log', yunits=1, yrange=[50,5000], updateifpossible=True, **kwargs):
n, rms = binnedrms(y*yunits)
x = xunit*n
# if the plot is already full,
try:
assert(updateifpossible)
lines = ax.get_lines()
lines[0].set_data(x, rms[0]/np.sqrt(n))
lines[1].set_data(x, rms)
except:
ax.plot(x, rms[0]/np.sqrt(n), linestyle='--', color='black', alpha=0.25, linewidth=3)
ax.plot(x, rms, **kwargs)
if scale == 'log':
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_ylim(*yrange)
ax.set_xlim(1, np.max(n))
else:
ax.set_xlim(0, np.max(x)+1)
ax.set_ylim(0, np.max(yrange))
def acf(y):
'''Calculate the autocorrelation function of an array,
returning an array of lags and an array with the acf.'''
a = np.correlate(y,y,'full')
trimmed = a[len(a)/2:]
lag = np.arange(len(trimmed))
return lag, trimmed/np.correlate(y,y)
def plotautocorrelation(y, ax=None,
xunit=1,
max=25,
yrange=[-0.2, 1],
**kwargs):
'''Plot the autocorrelation function of an array, as a function of lag.
y = the array, must be evenly spaced in x
ax = the Axes object to plot in
xunit = the scale of the x-coordinate (e.g. x[1] - x[0])
max = how many lag gridpoints to show?
yrange = the ylimits for the plot
**kwargs = passed to the ax.plot command
'''
lag, auto = acf(y)
x = lag*xunit
end = np.minimum(len(y), max)
ax.plot([0, end -1], [0,0], linestyle='--', color='black', alpha=0.25, linewidth=3)
ax.plot(x, auto, **kwargs)
ax.set_xlim(-1, end)
ax.set_ylim(*yrange)
def ccf(f, g, scale=1.0):
'''Calculate the normalized cross-correlation function of two identically-size arrays.
[required]:
f = an N-element array (for example, spectrum of target star)
g = an N-element array (for example, spectrum of template star)
scale = a scalar indicating what the indices of f and g (one unit of "lag") correspond to
'''
# how long are our arrays
N = len(f)
# define the x-axis, if not supplied
assert(len(f) == len(g))
x = np.arange(-N+1, N, 1.0)*scale
# calculation the normalized cross-correlation function
sigma_f = np.sqrt(np.sum(f**2)/N)
sigma_g = np.sqrt(np.sum(g**2)/N)
C_fg = np.correlate(f, g, 'full')/N/sigma_f/sigma_g
# WILL THIS WORK?
return scipy.interpolate.interp1d(x,C_fg, fill_value=0.0, bounds_error=False)
def todcor(f, g1, g2, scale=1.0, luminosity_ratio=None):
'''Calculate the 2D correlation of a 1D array with two template arrays.'''
assert(len(f) == len(g1))
assert(len(f) == len(g2))
C_1 = ccf(f, g1, scale=scale)
C_2 = ccf(f, g2, scale=scale)
C_12 = ccf(g1, g2, scale=scale)
N = len(f)
sigma_g1 = np.sqrt(np.sum(g1**2)/N)
sigma_g2 = np.sqrt(np.sum(g2**2)/N)
def bestalphaprime(s1, s2):
return sigma_g1/sigma_g2*(C_1(s1)*C_12(s2 - s1) - C_2(s2))/(C_2(s2)*C_12(s2-s1) - C_1(s1))
def R(s1, s2):
#a =
if luminosity_ratio is None:
a = np.maximum(np.minimum(bestalphaprime(s1,s2), sigma_g2/sigma_g1), 0.0)
flexiblecorrelation = (C_1(s1) + a*C_2(s2))/np.sqrt(1.0 + 2*a*C_12(s2 - s1) + a**2)
ok = np.isfinite(a)
peak = np.argmax(flexiblecorrelation[ok].flatten())
a = a[ok].flatten()[peak]
else:
a = luminosity_ratio*sigma_g2/sigma_g1
#print "alpha spans", np.min(a), np.max(a)
return (C_1(s1) + a*C_2(s2))/np.sqrt(1.0 + 2*a*C_12(s2 - s1) + a**2), a*sigma_g1/sigma_g2
return R