-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference_e2e.py
116 lines (87 loc) · 3.36 KB
/
inference_e2e.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from __future__ import absolute_import, division, print_function, unicode_literals
import glob
import os
import numpy as np
import argparse
import json
import torch
from scipy.io.wavfile import write
from env import AttrDict
from meldataset import MAX_WAV_VALUE
from models import Generator
h = None
device = None
def load_checkpoint(filepath, device):
assert os.path.isfile(filepath)
print("Loading '{}'".format(filepath))
checkpoint_dict = torch.load(filepath, map_location=device)
print("Complete.")
return checkpoint_dict
def scan_checkpoint(cp_dir, prefix):
pattern = os.path.join(cp_dir, prefix + '*')
cp_list = glob.glob(pattern)
if len(cp_list) == 0:
return ''
return sorted(cp_list)[-1]
def inference(a):
generator = Generator(h).to(device)
state_dict_g = load_checkpoint(a.checkpoint_file, device)
generator.load_state_dict(state_dict_g['generator'])
filelist = os.listdir(a.input_mels_dir)
os.makedirs(a.output_dir, exist_ok=True)
generator.eval()
generator.remove_weight_norm()
with torch.no_grad():
for i, filname in enumerate(filelist):
if not (filname.endswith(".pkl") or filname.endswith(".npy")):
continue
x = np.load(os.path.join(a.input_mels_dir, filname), allow_pickle=True)
if type(x) == dict:
x = x["mel"]
if type(x) is torch.Tensor:
x = x.detach().numpy()
if len(x.shape) != 3:
x = np.expand_dims(x,0)
if x.shape[1] != h.num_mels:
x = np.swapaxes(x,1,2)
assert x.shape[1] == h.num_mels
x = x - x.max()
assert len(x.shape) == 3
assert type(x) is np.ndarray
print(f"mel: min: {x.min():.2f}, mean: {x.mean():.2f}, median: {np.median(x):.2f}, max: {x.max():.2f}")
x = torch.FloatTensor(x).to(device)
y_g_hat = generator(x)
audio = y_g_hat.squeeze()
audio = audio * MAX_WAV_VALUE
if MAX_WAV_VALUE > 32768:
bitdepth = 'int32'
else:
bitdepth = 'int16'
audio = audio.cpu().numpy().astype(bitdepth)
output_file = os.path.join(a.output_dir, os.path.splitext(filname)[0] + a.file_suffix + '.wav')
write(output_file, h.sampling_rate, audio)
print(output_file)
def main():
print('Initializing Inference Process..')
parser = argparse.ArgumentParser()
parser.add_argument('--input_mels_dir', default='test_mel_files')
parser.add_argument('--output_dir', default='generated_files_from_mel')
parser.add_argument('--checkpoint_file', required=True)
parser.add_argument('--file_suffix', default="_generated_e2e")
a = parser.parse_args()
config_file = os.path.join(os.path.split(a.checkpoint_file)[0], 'config.json')
with open(config_file) as f:
data = f.read()
global h
json_config = json.loads(data)
h = AttrDict(json_config)
torch.manual_seed(h.seed)
global device
if torch.cuda.is_available():
torch.cuda.manual_seed(h.seed)
device = torch.device('cuda')
else:
device = torch.device('cpu')
inference(a)
if __name__ == '__main__':
main()