Skip to content

Latest commit

 

History

History
138 lines (102 loc) · 4.53 KB

README.rst

File metadata and controls

138 lines (102 loc) · 4.53 KB

Input data for swolfpy's life-cycle process models (swolfpy_inputdata)

Supported Python Versions License Downloads Format https://img.shields.io/badge/linting-pylint-yellowgreen Documentation Status Test DOI JIE DOI

Features

  • Input data for Life-cycle process models of swolfpy
    • Common data (e.g., molecular weights, heating values)
    • Material properties (46 common waste fractions; e.g., Food waste, Yard waste)
      • Chemical properties (e.g., carbon content, methane yield)
      • Physical properties (e.g., moisture content, density)
    • Material dependent process model inputs (e.g., separation efficiency for each waste fraction in the trommel)
    • Material indepent process model inputs
  • Built-in Monte Carlo simulation
Description of columns in the csv file for input data
Field Description
Category Category of the input (e.g., energy recovery, post closure)
Dictonary_Name Name of the dictionary and attribute (whitespace is not allowed)
Parameter Name Short name of the parameter (whitespace is not allowed)
Parameter Description Longer description of the parameter
Amount Default value for the parameter
Unit Unit of the parameter (e.g., MJ/Mg, kW, hours/day)
Uncertainty_type 0: Undefined, 2: Lognormal, 3: normal, 4: Uniform, 5: Triangular, 7: Discrete Uniform
Loc Mean for lognormal and normal distribution
scale Standard deviation for lognormal and normal distribution
shape Shape parameter for Weibull, Gamma or Beta distributions
Minimum Lower bound/minimum for lognormal, normal, uniform, triangular, and discrete uniform distributions
maximum Upper bound/maximum for lognormal, normal, uniform, triangular, and discrete uniform distributions
Reference  
Comment  

Installation

1- Download and install miniconda from: https://docs.conda.io/en/latest/miniconda.html

2- Update conda in a terminal window or anaconda prompt:

conda update conda

3- Create a new environment for swolfpy:

conda create --name swolfpy python=3.9

4- Activate the environment:

conda activate swolfpy

5- Install swolfpy_inputdata in the environment:

pip install swolfpy_inputdata

6- Use in python (e.g., Landfill model):

import swolfpy_inputdata as spid
data = spid.LF_Input()
model.calc()
#Example: Returs the actk parameter in landfill
data.LF_gas['actk']
#Example: Returns input data in dataframe format
data.Data