You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
My command is:
CUDA_VISIBLE_DEVICES=2,3 python -m torch.distributed.launch --nproc_per_node=2 tools/train.py configs/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k.py --launcher pytorch
but got:
2022-05-23 11:06:19,676 - mmseg - INFO - workflow: [('train', 1)], max: 160000 iters
Traceback (most recent call last):
File "tools/train.py", line 163, in
Traceback (most recent call last):
main()
File "tools/train.py", line 163, in
File "tools/train.py", line 152, in main
train_segmentor(
File "/home/cailingling/code/SwinTransformer3/mmseg/apis/train.py", line 116, in train_segmentor
runner.run(data_loaders, cfg.workflow)
File "/home/cailingling/.local/lib/python3.8/site-packages/mmcv/runner/iter_based_runner.py", line 130, in run
iter_runner(iter_loaders[i], **kwargs)
File "/home/cailingling/.local/lib/python3.8/site-packages/mmcv/runner/iter_based_runner.py", line 60, in train
main()
File "tools/train.py", line 152, in main
outputs = self.model.train_step(data_batch, self.optimizer, **kwargs)
File "/home/cailingling/.local/lib/python3.8/site-packages/mmcv/parallel/distributed.py", line 36, in train_step
output = self.module.train_step(*inputs[0], **kwargs[0])
File "/home/cailingling/code/SwinTransformer3/mmseg/models/segmentors/base.py", line 152, in train_step
train_segmentor(
File "/home/cailingling/code/SwinTransformer3/mmseg/apis/train.py", line 116, in train_segmentor
losses = self(**data_batch)
File "/home/cailingling/anaconda3/envs/pytorch/lib/python3.8/site-packages/torch/nn/modules/module.py", line 550, in call
runner.run(data_loaders, cfg.workflow)
File "/home/cailingling/.local/lib/python3.8/site-packages/mmcv/runner/iter_based_runner.py", line 130, in run
iter_runner(iter_loaders[i], **kwargs)
File "/home/cailingling/.local/lib/python3.8/site-packages/mmcv/runner/iter_based_runner.py", line 60, in train
result = self.forward(*input, **kwargs)
File "/home/cailingling/.local/lib/python3.8/site-packages/mmcv/runner/fp16_utils.py", line 84, in new_func
outputs = self.model.train_step(data_batch, self.optimizer, **kwargs)
File "/home/cailingling/.local/lib/python3.8/site-packages/mmcv/parallel/distributed.py", line 36, in train_step
return old_func(*args, **kwargs)
File "/home/cailingling/code/SwinTransformer3/mmseg/models/segmentors/base.py", line 122, in forward
output = self.module.train_step(*inputs[0], **kwargs[0])
File "/home/cailingling/code/SwinTransformer3/mmseg/models/segmentors/base.py", line 152, in train_step
return self.forward_train(img, img_metas, **kwargs)
File "/home/cailingling/code/SwinTransformer3/mmseg/models/segmentors/encoder_decoder.py", line 157, in forward_train
losses = self(**data_batch)
File "/home/cailingling/anaconda3/envs/pytorch/lib/python3.8/site-packages/torch/nn/modules/module.py", line 550, in call
loss_decode = self._decode_head_forward_train(x, img_metas,
File "/home/cailingling/code/SwinTransformer3/mmseg/models/segmentors/encoder_decoder.py", line 100, in _decode_head_forward_train
loss_decode = self.decode_head.forward_train(x, img_metas,
File "/home/cailingling/code/SwinTransformer3/mmseg/models/decode_heads/decode_head.py", line 187, in forward_train
losses = self.losses(seg_logits, gt_semantic_seg)
File "/home/cailingling/.local/lib/python3.8/site-packages/mmcv/runner/fp16_utils.py", line 164, in new_func
result = self.forward(*input, **kwargs)
File "/home/cailingling/.local/lib/python3.8/site-packages/mmcv/runner/fp16_utils.py", line 84, in new_func
return old_func(*args, **kwargs)
File "/home/cailingling/code/SwinTransformer3/mmseg/models/decode_heads/decode_head.py", line 218, in losses
return old_func(*args, **kwargs)
File "/home/cailingling/code/SwinTransformer3/mmseg/models/segmentors/base.py", line 122, in forward
seg_logit = resize(
File "/home/cailingling/code/SwinTransformer3/mmseg/ops/wrappers.py", line 29, in resize
return F.interpolate(input, size, scale_factor, mode, align_corners)
File "/home/cailingling/anaconda3/envs/pytorch/lib/python3.8/site-packages/torch/nn/functional.py", line 3012, in interpolate
return self.forward_train(img, img_metas, **kwargs)
File "/home/cailingling/code/SwinTransformer3/mmseg/models/segmentors/encoder_decoder.py", line 157, in forward_train
loss_decode = self._decode_head_forward_train(x, img_metas,
File "/home/cailingling/code/SwinTransformer3/mmseg/models/segmentors/encoder_decoder.py", line 100, in _decode_head_forward_train
loss_decode = self.decode_head.forward_train(x, img_metas,
File "/home/cailingling/code/SwinTransformer3/mmseg/models/decode_heads/decode_head.py", line 187, in forward_train
losses = self.losses(seg_logits, gt_semantic_seg)
File "/home/cailingling/.local/lib/python3.8/site-packages/mmcv/runner/fp16_utils.py", line 164, in new_func
return old_func(*args, **kwargs)
File "/home/cailingling/code/SwinTransformer3/mmseg/models/decode_heads/decode_head.py", line 218, in losses
seg_logit = resize(
File "/home/cailingling/code/SwinTransformer3/mmseg/ops/wrappers.py", line 29, in resize
return F.interpolate(input, size, scale_factor, mode, align_corners)
File "/home/cailingling/anaconda3/envs/pytorch/lib/python3.8/site-packages/torch/nn/functional.py", line 3012, in interpolate
return torch._C._nn.upsample_bilinear2d(input, _interp_output_size(2, closed_over_args), align_corners,
RuntimeError: It is expected output_size equals to 2, but got size 3
return torch._C._nn.upsample_bilinear2d(input, _interp_output_size(2, closed_over_args), align_corners,
RuntimeError: It is expected output_size equals to 2, but got size 3
Traceback (most recent call last):
File "/home/cailingling/anaconda3/envs/pytorch/lib/python3.8/runpy.py", line 194, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/home/cailingling/anaconda3/envs/pytorch/lib/python3.8/runpy.py", line 87, in _run_code
exec(code, run_globals)
However, single-gpu can work well...
The text was updated successfully, but these errors were encountered:
My command is:
CUDA_VISIBLE_DEVICES=2,3 python -m torch.distributed.launch --nproc_per_node=2 tools/train.py configs/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k.py --launcher pytorch
but got:
2022-05-23 11:06:19,676 - mmseg - INFO - workflow: [('train', 1)], max: 160000 iters
Traceback (most recent call last):
File "tools/train.py", line 163, in
Traceback (most recent call last):
main()
File "tools/train.py", line 163, in
File "tools/train.py", line 152, in main
train_segmentor(
File "/home/cailingling/code/SwinTransformer3/mmseg/apis/train.py", line 116, in train_segmentor
runner.run(data_loaders, cfg.workflow)
File "/home/cailingling/.local/lib/python3.8/site-packages/mmcv/runner/iter_based_runner.py", line 130, in run
iter_runner(iter_loaders[i], **kwargs)
File "/home/cailingling/.local/lib/python3.8/site-packages/mmcv/runner/iter_based_runner.py", line 60, in train
main()
File "tools/train.py", line 152, in main
outputs = self.model.train_step(data_batch, self.optimizer, **kwargs)
File "/home/cailingling/.local/lib/python3.8/site-packages/mmcv/parallel/distributed.py", line 36, in train_step
output = self.module.train_step(*inputs[0], **kwargs[0])
File "/home/cailingling/code/SwinTransformer3/mmseg/models/segmentors/base.py", line 152, in train_step
train_segmentor(
File "/home/cailingling/code/SwinTransformer3/mmseg/apis/train.py", line 116, in train_segmentor
losses = self(**data_batch)
File "/home/cailingling/anaconda3/envs/pytorch/lib/python3.8/site-packages/torch/nn/modules/module.py", line 550, in call
runner.run(data_loaders, cfg.workflow)
File "/home/cailingling/.local/lib/python3.8/site-packages/mmcv/runner/iter_based_runner.py", line 130, in run
iter_runner(iter_loaders[i], **kwargs)
File "/home/cailingling/.local/lib/python3.8/site-packages/mmcv/runner/iter_based_runner.py", line 60, in train
result = self.forward(*input, **kwargs)
File "/home/cailingling/.local/lib/python3.8/site-packages/mmcv/runner/fp16_utils.py", line 84, in new_func
outputs = self.model.train_step(data_batch, self.optimizer, **kwargs)
File "/home/cailingling/.local/lib/python3.8/site-packages/mmcv/parallel/distributed.py", line 36, in train_step
return old_func(*args, **kwargs)
File "/home/cailingling/code/SwinTransformer3/mmseg/models/segmentors/base.py", line 122, in forward
output = self.module.train_step(*inputs[0], **kwargs[0])
File "/home/cailingling/code/SwinTransformer3/mmseg/models/segmentors/base.py", line 152, in train_step
return self.forward_train(img, img_metas, **kwargs)
File "/home/cailingling/code/SwinTransformer3/mmseg/models/segmentors/encoder_decoder.py", line 157, in forward_train
losses = self(**data_batch)
File "/home/cailingling/anaconda3/envs/pytorch/lib/python3.8/site-packages/torch/nn/modules/module.py", line 550, in call
loss_decode = self._decode_head_forward_train(x, img_metas,
File "/home/cailingling/code/SwinTransformer3/mmseg/models/segmentors/encoder_decoder.py", line 100, in _decode_head_forward_train
loss_decode = self.decode_head.forward_train(x, img_metas,
File "/home/cailingling/code/SwinTransformer3/mmseg/models/decode_heads/decode_head.py", line 187, in forward_train
losses = self.losses(seg_logits, gt_semantic_seg)
File "/home/cailingling/.local/lib/python3.8/site-packages/mmcv/runner/fp16_utils.py", line 164, in new_func
result = self.forward(*input, **kwargs)
File "/home/cailingling/.local/lib/python3.8/site-packages/mmcv/runner/fp16_utils.py", line 84, in new_func
return old_func(*args, **kwargs)
File "/home/cailingling/code/SwinTransformer3/mmseg/models/decode_heads/decode_head.py", line 218, in losses
return old_func(*args, **kwargs)
File "/home/cailingling/code/SwinTransformer3/mmseg/models/segmentors/base.py", line 122, in forward
seg_logit = resize(
File "/home/cailingling/code/SwinTransformer3/mmseg/ops/wrappers.py", line 29, in resize
return F.interpolate(input, size, scale_factor, mode, align_corners)
File "/home/cailingling/anaconda3/envs/pytorch/lib/python3.8/site-packages/torch/nn/functional.py", line 3012, in interpolate
return self.forward_train(img, img_metas, **kwargs)
File "/home/cailingling/code/SwinTransformer3/mmseg/models/segmentors/encoder_decoder.py", line 157, in forward_train
loss_decode = self._decode_head_forward_train(x, img_metas,
File "/home/cailingling/code/SwinTransformer3/mmseg/models/segmentors/encoder_decoder.py", line 100, in _decode_head_forward_train
loss_decode = self.decode_head.forward_train(x, img_metas,
File "/home/cailingling/code/SwinTransformer3/mmseg/models/decode_heads/decode_head.py", line 187, in forward_train
losses = self.losses(seg_logits, gt_semantic_seg)
File "/home/cailingling/.local/lib/python3.8/site-packages/mmcv/runner/fp16_utils.py", line 164, in new_func
return old_func(*args, **kwargs)
File "/home/cailingling/code/SwinTransformer3/mmseg/models/decode_heads/decode_head.py", line 218, in losses
seg_logit = resize(
File "/home/cailingling/code/SwinTransformer3/mmseg/ops/wrappers.py", line 29, in resize
return F.interpolate(input, size, scale_factor, mode, align_corners)
File "/home/cailingling/anaconda3/envs/pytorch/lib/python3.8/site-packages/torch/nn/functional.py", line 3012, in interpolate
return torch._C._nn.upsample_bilinear2d(input, _interp_output_size(2, closed_over_args), align_corners,
RuntimeError: It is expected output_size equals to 2, but got size 3
return torch._C._nn.upsample_bilinear2d(input, _interp_output_size(2, closed_over_args), align_corners,
RuntimeError: It is expected output_size equals to 2, but got size 3
Traceback (most recent call last):
File "/home/cailingling/anaconda3/envs/pytorch/lib/python3.8/runpy.py", line 194, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/home/cailingling/anaconda3/envs/pytorch/lib/python3.8/runpy.py", line 87, in _run_code
exec(code, run_globals)
However, single-gpu can work well...
The text was updated successfully, but these errors were encountered: