Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Training Problem with SWIN configuration file #225

Open
ronit450 opened this issue Jun 22, 2024 · 0 comments
Open

Training Problem with SWIN configuration file #225

ronit450 opened this issue Jun 22, 2024 · 0 comments

Comments

@ronit450
Copy link

I am using mask_rcnn_swin_small_patch4_window7_mstrain_480-800_adamw_3x_coco.py, with my own training script. Its my custom dataset which I am using. I have not modified anything in the config file but getting error

import json
import mmcv
import os.path as osp
from mmdet.apis import train_detector, set_random_seed
from mmdet.datasets import build_dataset
from mmdet.models import build_detector
import mmdet
import torch
from mmdet.datasets.builder import DATASETS

class ObjectDetector:
    def __init__(self, config_path):
        torch.cuda.empty_cache()
        with open(config_path, 'r') as file:
            self.config = json.load(file)
        
        # Load the default config file
        self.cfg =  mmcv.Config.fromfile('/home/biosense/Documents/Rana/Ronit/SWIN/Swin-Transformer-Object-Detection/configs/_base_/models/cascade_mask_rcnn_r50_fpn.py')
        # self.cfg = ''
        self._update_config()
        self._save_config()

    def _update_config(self):
        # Dataset configuration
        self.cfg.dataset_type = 'CocoDataset'
        self.cfg.data_root = self.config['train_folder']

        self.cfg.data.train.type = self.cfg.dataset_type
        self.cfg.data.train.data_root = self.config['train_folder']
        self.cfg.data.train.ann_file = self.config['train_json']
        self.cfg.data.train.img_prefix = ''

        self.cfg.data.val.type = self.cfg.dataset_type
        self.cfg.data.val.data_root = self.config['val_folder']
        self.cfg.data.val.ann_file = self.config['val_json']
        self.cfg.data.val.img_prefix = ''

        self.cfg.data.test.type = self.cfg.dataset_type
        self.cfg.data.test.data_root = self.config['test_folder']
        self.cfg.data.test.ann_file = self.config['test_json']
        self.cfg.data.test.img_prefix = ''

        # Model settings
        self.cfg.model.roi_head.bbox_head.num_classes = self.config['num_classes']

        # Training settings
        self.cfg.runner.max_epochs = self.config['epochs']
        self.cfg.work_dir = './results'
        
        # Optimizer settings
        self.cfg.optimizer.lr = self.config['learning_rate']
        self.cfg.optimizer.weight_decay = self.config['weight_decay']
        
        # Learning rate scheduler settings
        self.cfg.lr_config.policy = 'step'
        self.cfg.lr_config.warmup = self.config['warmup']
        self.cfg.lr_config.warmup_iters = self.config['warmup_iters']
        self.cfg.lr_config.warmup_ratio = self.config['warmup_ratio']
        self.cfg.lr_config.step = self.config['step_lr_policy']

        # Logging settings
        self.cfg.log_config.interval = self.config['log_interval']

        # Evaluation settings
        self.cfg.evaluation.metric = 'bbox'
        self.cfg.evaluation.interval = self.config['evaluation_interval']

        # Checkpoint settings
        self.cfg.checkpoint_config.interval = self.config['checkpoint_interval']

        # Seed for reproducibility
        self.cfg.seed = 0
        set_random_seed(0, deterministic=False)
        self.cfg.gpu_ids = range(1)

        print(f'Config:\n{self.cfg.pretty_text}')

    def _save_config(self):
        # Save the updated config to a file
        self.cfg.dump('./updated_config.py')

    def train(self):
        # Build dataset and model
        mmdet.datasets.coco.CocoDataset.CLASSES = ('pt', 'gp')
        datasets = [build_dataset(self.cfg.data.train)]
        model = build_detector(self.cfg.model, train_cfg=self.cfg.get('train_cfg'), test_cfg=self.cfg.get('test_cfg'))
        model.CLASSES = datasets[0].CLASSES

        # Create directory for work
        mmcv.mkdir_or_exist(osp.abspath(self.cfg.work_dir))
        train_detector(model, datasets, self.cfg, distributed=False, validate=True)

if __name__ == '__main__':
    config_path = 'config.json'
    detector = ObjectDetector(config_path)
    detector.train()

File "/home/biosense/Documents/Rana/Ronit/SWIN/Swin-Transformer-Object-Detection/mmdet/datasets/utils.py", line 136, in _check_head
assert module.num_classes == len(dataset.CLASSES),
AssertionError: The num_classes (80) in FCNMaskHead of MMDataParallel does not matches the length of CLASSES 2) in CocoDataset

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant