-
Notifications
You must be signed in to change notification settings - Fork 6
/
init_opt.py
157 lines (125 loc) · 6.02 KB
/
init_opt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import math
import numpy as np
print('- Initialize parameters')
def gaussian_kernel(ksize, sigma):
kernel = np.zeros((ksize[0], ksize[1]), dtype=np.float)
halfsizeX = ksize[0] // 2
halfsizeY = ksize[1] // 2
sigma2 = 2 * sigma * sigma
n_halfsizeX = halfsizeX
n_halfsizeY = halfsizeY
half_one_x = 0
half_one_y = 0
if ksize[0] % 2 == 0:
n_halfsizeX -= 1
half_one_x = 0.5
if ksize[1] % 2 == 0:
n_halfsizeY -= 1
half_one_y = 0.5
for i in range(n_halfsizeX + 1):
for j in range(n_halfsizeY + 1):
value = math.exp(-((i + half_one_x) ** 2 + (j + half_one_y) ** 2) / sigma2)
kernel[halfsizeX + i][halfsizeY + j] = value
kernel[halfsizeX + i][n_halfsizeY - j] = value
kernel[n_halfsizeX - i][halfsizeY + j] = value
kernel[n_halfsizeX - i][n_halfsizeY - j] = value
kernel = kernel / kernel.sum()
return kernel
optA = type('opt_A', (), {})
optS = type('opt_A', (), {})
# Synthesis: guided completion
# =========================================================================
# Patch size
# =========================================================================
optS.pSize = 9 # Patch size (odd number), use larger patch for more coherent region
optS.pRad = math.floor(optS.pSize / 2) # Patch radius
optS.pNumPix = optS.pSize * optS.pSize # Number of pixels in a patch
optS.pMidPix = round(optS.pNumPix / 2) # The center of the patch
# =========================================================================
# Multi-resolution parameters
# =========================================================================
optS.numPyrLvl = 10 # Number of coarse to fine layer
optS.coarestImgSize = 32 # The size of the smallest image in the pyramid
optS.useLogScale = 1 # Use log scales or linear scales for downsampling
# Weighting parameters for patch match, larger weight put more emphasis on
# pixels near to known pixels
optS.wDist = 2 ** np.linspace(1, 0.0, optS.numPyrLvl)
# Patch weighting kernel
h = gaussian_kernel([optS.pSize, optS.pSize], optS.pRad)
h = h.reshape(-1) / np.sum(h)
optS.wPatch = h
# =========================================================================
# Parameters for domain transformation and photometric compensation
# =========================================================================
# This scale range is used to reject unlikely patch transformation
optS.minScale = 0.75 # Mininum patch scale variation
optS.maxScale = 1.25 # Maximum patch scale variation
# Parameters for photometric compensation
optS.minBias = -0.05 # Mininum bias compensation
optS.maxBias = 0.05 # Maximum bias compensation
# =========================================================================
# Coarse-to-fine iterations
# =========================================================================
# Number of iterations per level
optS.numIter = 10 # The initial iteration number, large hole might require
# more iterations
optS.numIterDec = optS.numIter / optS.numPyrLvl # Number of decrements
optS.numIterMin = 3 # Minimum number of iterations
optS.numPassPerIter = 1
# =========================================================================
# Weighting parameters
# =========================================================================
# To-Do: adaptive parameter selection
optS.lambdaCoherence = 1e-2 # Weighting parameter for coherence
# Planar cost
optS.lambdaPlane = 5e-2 # Weighting parameters for planar cost
# Directional cost
optS.lambdaDirect = 5 # Weighting parameters for directional cost
optS.directThres = 0.05 # Directional cost threshold
optS.lambdaProx = 0e-2 # Weighting parameters for proximity cost
optS.proxThres = 0.25
optS.lambdaReg = -0.02 # Weighting parameters for encouraging
# regularity-guided sampling
# =========================================================================
# Method configuration
# =========================================================================
optS.useRegGuide = 1
optS.usePlaneGuide = 1
optS.useBiasCorrection = 0
# === Precomputed patch position in the reference position ===
X, Y = np.meshgrid(np.arange(-optS.pRad, optS.pRad+1), np.arange(-optS.pRad, optS.pRad+1))
optS.refPatchPos = np.vstack([Y.reshape(-1), X.reshape(-1), np.ones(optS.pSize*optS.pSize)]).T
# === Propagation directions ===
optS.propDir = np.array([[1, 0], [0, 1], [-1, 0], [0, -1]])
optS.rsThres = 0.05 # Random sampling threshold for early termination
optS.voteUpdateW = 1 # Smaller number for quick voting update
optS.numRegSample = 5 # Number of regularity-guided sampling per iteration
optS.numRandSample = 5 # Number of coarse-to-fine random sampling per iteration
# [To-Do] robust norm, e.g., huber
optS.costType = 'L1' # Patch appearance cost, other option: 'L2'
# Analysis: extracting planar structure
# === Plane parameters ===
# Detect up to 3 vanishing points, always include dummy VP (froto-parallel plane)
optA.numVP = 4
# Fixed density for frontal parallel plane [To-Do] should adapt to image size
optA.fpPlaneProb = 1e-4
# === Regularity parameters ===
# Maximum number of local features
optA.numFeatMatch = 2000
# Blurring operations for estimating the plane spatial support
optA.filterSize = 100
optA.filterSigma = 50
optA.numFilterIter = 20
# Add the constant to all plane posterior probabilities
optA.probConst = 0.05
# Parameters for feature extraction and matching
optA.PeakThreshold = 0.04
optA.maxNumLocalFeat = 1000
optA.numQueryNN = 3
optA.maxDispVec = 1000
optA.minDistDispVec = 100
# Parameters for the Mean-Shift clustering algorithm
optA.msBandwidth = 20
optA.msMinNumClusterMember = 5
# Threshold for determining whether a pair of feature matches is on a plane
optA.prodProbThres = 0.5