-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcreate-holdout-error-data-expectations.py
26 lines (19 loc) · 1.17 KB
/
create-holdout-error-data-expectations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#!/usr/bin/env python
import great_expectations as ge
# Load the data context for the project
context = ge.data_context.DataContext()
# Profile the new data asset ---------------------------------------------------
context.profile_datasource(datasource_name='output__dir', data_assets=['holdout-error-data'])
context.build_data_documentation()
# Create expectations ----------------------------------------------------------
df = context.get_batch('holdout-error-data')
# Expect that predictions are off by no more than 100
df.expect_column_values_to_be_between(column='error', min_value=-100, max_value=100)
# Expect that roughly 95% of the error values fall within -20 and 20.
df.expect_column_kl_divergence_to_be_less_than(column='error',
partition_object={'bins': [-20, 0, 20],
'weights': [0.475, 0.475],
'tail_weights': [0.025, 0.025]},
threshold=0.5)
# Save expectations ------------------------------------------------------------
df.save_expectation_suite()