forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeep_speech.py
417 lines (342 loc) · 13.9 KB
/
deep_speech.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Main entry to train and evaluate DeepSpeech model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
# pylint: disable=g-bad-import-order
from absl import app as absl_app
from absl import flags
from absl import logging
import tensorflow as tf
# pylint: enable=g-bad-import-order
import data.dataset as dataset
import decoder
import deep_speech_model
from official.utils.flags import core as flags_core
from official.utils.misc import distribution_utils
from official.utils.misc import model_helpers
# Default vocabulary file
_VOCABULARY_FILE = os.path.join(
os.path.dirname(__file__), "data/vocabulary.txt")
# Evaluation metrics
_WER_KEY = "WER"
_CER_KEY = "CER"
def compute_length_after_conv(max_time_steps, ctc_time_steps, input_length):
"""Computes the time_steps/ctc_input_length after convolution.
Suppose that the original feature contains two parts:
1) Real spectrogram signals, spanning input_length steps.
2) Padded part with all 0s.
The total length of those two parts is denoted as max_time_steps, which is
the padded length of the current batch. After convolution layers, the time
steps of a spectrogram feature will be decreased. As we know the percentage
of its original length within the entire length, we can compute the time steps
for the signal after conv as follows (using ctc_input_length to denote):
ctc_input_length = (input_length / max_time_steps) * output_length_of_conv.
This length is then fed into ctc loss function to compute loss.
Args:
max_time_steps: max_time_steps for the batch, after padding.
ctc_time_steps: number of timesteps after convolution.
input_length: actual length of the original spectrogram, without padding.
Returns:
the ctc_input_length after convolution layer.
"""
ctc_input_length = tf.cast(tf.multiply(
input_length, ctc_time_steps), dtype=tf.float32)
return tf.cast(tf.math.floordiv(
ctc_input_length, tf.cast(max_time_steps, dtype=tf.float32)), dtype=tf.int32)
def evaluate_model(estimator, speech_labels, entries, input_fn_eval):
"""Evaluate the model performance using WER anc CER as metrics.
WER: Word Error Rate
CER: Character Error Rate
Args:
estimator: estimator to evaluate.
speech_labels: a string specifying all the character in the vocabulary.
entries: a list of data entries (audio_file, file_size, transcript) for the
given dataset.
input_fn_eval: data input function for evaluation.
Returns:
Evaluation result containing 'wer' and 'cer' as two metrics.
"""
# Get predictions
predictions = estimator.predict(input_fn=input_fn_eval)
# Get probabilities of each predicted class
probs = [pred["probabilities"] for pred in predictions]
num_of_examples = len(probs)
targets = [entry[2] for entry in entries] # The ground truth transcript
total_wer, total_cer = 0, 0
greedy_decoder = decoder.DeepSpeechDecoder(speech_labels)
for i in range(num_of_examples):
# Decode string.
decoded_str = greedy_decoder.decode(probs[i])
# Compute CER.
total_cer += greedy_decoder.cer(decoded_str, targets[i]) / float(
len(targets[i]))
# Compute WER.
total_wer += greedy_decoder.wer(decoded_str, targets[i]) / float(
len(targets[i].split()))
# Get mean value
total_cer /= num_of_examples
total_wer /= num_of_examples
global_step = estimator.get_variable_value(tf.compat.v1.GraphKeys.GLOBAL_STEP)
eval_results = {
_WER_KEY: total_wer,
_CER_KEY: total_cer,
tf.compat.v1.GraphKeys.GLOBAL_STEP: global_step,
}
return eval_results
def model_fn(features, labels, mode, params):
"""Define model function for deep speech model.
Args:
features: a dictionary of input_data features. It includes the data
input_length, label_length and the spectrogram features.
labels: a list of labels for the input data.
mode: current estimator mode; should be one of
`tf.estimator.ModeKeys.TRAIN`, `EVALUATE`, `PREDICT`.
params: a dict of hyper parameters to be passed to model_fn.
Returns:
EstimatorSpec parameterized according to the input params and the
current mode.
"""
num_classes = params["num_classes"]
input_length = features["input_length"]
label_length = features["label_length"]
features = features["features"]
# Create DeepSpeech2 model.
model = deep_speech_model.DeepSpeech2(
flags_obj.rnn_hidden_layers, flags_obj.rnn_type,
flags_obj.is_bidirectional, flags_obj.rnn_hidden_size,
num_classes, flags_obj.use_bias)
if mode == tf.estimator.ModeKeys.PREDICT:
logits = model(features, training=False)
predictions = {
"classes": tf.argmax(logits, axis=2),
"probabilities": logits,
"logits": logits
}
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions)
# In training mode.
logits = model(features, training=True)
ctc_input_length = compute_length_after_conv(
tf.shape(features)[1], tf.shape(logits)[1], input_length)
# Compute CTC loss
loss = tf.reduce_mean(tf.keras.backend.ctc_batch_cost(
labels, logits, ctc_input_length, label_length))
optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=flags_obj.learning_rate)
global_step = tf.compat.v1.train.get_or_create_global_step()
minimize_op = optimizer.minimize(loss, global_step=global_step)
update_ops = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.UPDATE_OPS)
# Create the train_op that groups both minimize_ops and update_ops
train_op = tf.group(minimize_op, update_ops)
return tf.estimator.EstimatorSpec(
mode=mode,
loss=loss,
train_op=train_op)
def generate_dataset(data_dir):
"""Generate a speech dataset."""
audio_conf = dataset.AudioConfig(sample_rate=flags_obj.sample_rate,
window_ms=flags_obj.window_ms,
stride_ms=flags_obj.stride_ms,
normalize=True)
train_data_conf = dataset.DatasetConfig(
audio_conf,
data_dir,
flags_obj.vocabulary_file,
flags_obj.sortagrad
)
speech_dataset = dataset.DeepSpeechDataset(train_data_conf)
return speech_dataset
def per_device_batch_size(batch_size, num_gpus):
"""For multi-gpu, batch-size must be a multiple of the number of GPUs.
Note that distribution strategy handles this automatically when used with
Keras. For using with Estimator, we need to get per GPU batch.
Args:
batch_size: Global batch size to be divided among devices. This should be
equal to num_gpus times the single-GPU batch_size for multi-gpu training.
num_gpus: How many GPUs are used with DistributionStrategies.
Returns:
Batch size per device.
Raises:
ValueError: if batch_size is not divisible by number of devices
"""
if num_gpus <= 1:
return batch_size
remainder = batch_size % num_gpus
if remainder:
err = ('When running with multiple GPUs, batch size '
'must be a multiple of the number of available GPUs. Found {} '
'GPUs with a batch size of {}; try --batch_size={} instead.'
).format(num_gpus, batch_size, batch_size - remainder)
raise ValueError(err)
return int(batch_size / num_gpus)
def run_deep_speech(_):
"""Run deep speech training and eval loop."""
tf.compat.v1.set_random_seed(flags_obj.seed)
# Data preprocessing
logging.info("Data preprocessing...")
train_speech_dataset = generate_dataset(flags_obj.train_data_dir)
eval_speech_dataset = generate_dataset(flags_obj.eval_data_dir)
# Number of label classes. Label string is "[a-z]' -"
num_classes = len(train_speech_dataset.speech_labels)
# Use distribution strategy for multi-gpu training
num_gpus = flags_core.get_num_gpus(flags_obj)
distribution_strategy = distribution_utils.get_distribution_strategy(num_gpus=num_gpus)
run_config = tf.estimator.RunConfig(
train_distribute=distribution_strategy)
estimator = tf.estimator.Estimator(
model_fn=model_fn,
model_dir=flags_obj.model_dir,
config=run_config,
params={
"num_classes": num_classes,
}
)
# Benchmark logging
run_params = {
"batch_size": flags_obj.batch_size,
"train_epochs": flags_obj.train_epochs,
"rnn_hidden_size": flags_obj.rnn_hidden_size,
"rnn_hidden_layers": flags_obj.rnn_hidden_layers,
"rnn_type": flags_obj.rnn_type,
"is_bidirectional": flags_obj.is_bidirectional,
"use_bias": flags_obj.use_bias
}
per_replica_batch_size = per_device_batch_size(flags_obj.batch_size, num_gpus)
def input_fn_train():
return dataset.input_fn(
per_replica_batch_size, train_speech_dataset)
def input_fn_eval():
return dataset.input_fn(
per_replica_batch_size, eval_speech_dataset)
total_training_cycle = (flags_obj.train_epochs //
flags_obj.epochs_between_evals)
for cycle_index in range(total_training_cycle):
logging.info("Starting a training cycle: %d/%d",
cycle_index + 1, total_training_cycle)
# Perform batch_wise dataset shuffling
train_speech_dataset.entries = dataset.batch_wise_dataset_shuffle(
train_speech_dataset.entries, cycle_index, flags_obj.sortagrad,
flags_obj.batch_size)
estimator.train(input_fn=input_fn_train)
# Evaluation
logging.info("Starting to evaluate...")
eval_results = evaluate_model(
estimator, eval_speech_dataset.speech_labels,
eval_speech_dataset.entries, input_fn_eval)
# Log the WER and CER results.
benchmark_logger.log_evaluation_result(eval_results)
logging.info(
"Iteration {}: WER = {:.2f}, CER = {:.2f}".format(
cycle_index + 1, eval_results[_WER_KEY], eval_results[_CER_KEY]))
# If some evaluation threshold is met
if model_helpers.past_stop_threshold(
flags_obj.wer_threshold, eval_results[_WER_KEY]):
break
def define_deep_speech_flags():
"""Add flags for run_deep_speech."""
# Add common flags
flags_core.define_base(
data_dir=False, # we use train_data_dir and eval_data_dir instead
export_dir=True,
train_epochs=True,
hooks=True,
num_gpu=True,
epochs_between_evals=True
)
flags_core.define_performance(
num_parallel_calls=False,
inter_op=False,
intra_op=False,
synthetic_data=False,
max_train_steps=False,
dtype=False
)
flags_core.define_benchmark()
flags.adopt_module_key_flags(flags_core)
flags_core.set_defaults(
model_dir="/tmp/deep_speech_model/",
export_dir="/tmp/deep_speech_saved_model/",
train_epochs=10,
batch_size=128,
hooks="")
# Deep speech flags
flags.DEFINE_integer(
name="seed", default=1,
help=flags_core.help_wrap("The random seed."))
flags.DEFINE_string(
name="train_data_dir",
default="/tmp/librispeech_data/test-clean/LibriSpeech/test-clean.csv",
help=flags_core.help_wrap("The csv file path of train dataset."))
flags.DEFINE_string(
name="eval_data_dir",
default="/tmp/librispeech_data/test-clean/LibriSpeech/test-clean.csv",
help=flags_core.help_wrap("The csv file path of evaluation dataset."))
flags.DEFINE_bool(
name="sortagrad", default=True,
help=flags_core.help_wrap(
"If true, sort examples by audio length and perform no "
"batch_wise shuffling for the first epoch."))
flags.DEFINE_integer(
name="sample_rate", default=16000,
help=flags_core.help_wrap("The sample rate for audio."))
flags.DEFINE_integer(
name="window_ms", default=20,
help=flags_core.help_wrap("The frame length for spectrogram."))
flags.DEFINE_integer(
name="stride_ms", default=10,
help=flags_core.help_wrap("The frame step."))
flags.DEFINE_string(
name="vocabulary_file", default=_VOCABULARY_FILE,
help=flags_core.help_wrap("The file path of vocabulary file."))
# RNN related flags
flags.DEFINE_integer(
name="rnn_hidden_size", default=800,
help=flags_core.help_wrap("The hidden size of RNNs."))
flags.DEFINE_integer(
name="rnn_hidden_layers", default=5,
help=flags_core.help_wrap("The number of RNN layers."))
flags.DEFINE_bool(
name="use_bias", default=True,
help=flags_core.help_wrap("Use bias in the last fully-connected layer"))
flags.DEFINE_bool(
name="is_bidirectional", default=True,
help=flags_core.help_wrap("If rnn unit is bidirectional"))
flags.DEFINE_enum(
name="rnn_type", default="gru",
enum_values=deep_speech_model.SUPPORTED_RNNS.keys(),
case_sensitive=False,
help=flags_core.help_wrap("Type of RNN cell."))
# Training related flags
flags.DEFINE_float(
name="learning_rate", default=5e-4,
help=flags_core.help_wrap("The initial learning rate."))
# Evaluation metrics threshold
flags.DEFINE_float(
name="wer_threshold", default=None,
help=flags_core.help_wrap(
"If passed, training will stop when the evaluation metric WER is "
"greater than or equal to wer_threshold. For libri speech dataset "
"the desired wer_threshold is 0.23 which is the result achieved by "
"MLPerf implementation."))
def main(_):
run_deep_speech(flags_obj)
if __name__ == "__main__":
logging.set_verbosity(logging.INFO)
define_deep_speech_flags()
flags_obj = flags.FLAGS
absl_app.run(main)