-
Notifications
You must be signed in to change notification settings - Fork 130
/
Copy pathframework.py
executable file
·187 lines (146 loc) · 6.47 KB
/
framework.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# -*- coding:utf-8 -*-
# Copyright xmuspeech (Author: Snowdar 2019-07-01)
import torch.nn
import libs.support.utils as utils
#### Use 'from libs.nnet import *' in your model.py to use all components and loss functions.
## Function
def for_extract_embedding(maxChunk=10000, isMatrix=True):
"""
A decorator for extract_embedding class-function to wrap some common process codes like Kaldi's x-vector extractor.
Used in TopVirtualNnet.
"""
def wrapper(function):
def _wrapper(self, input):
"""
@input: a 3-dimensional tensor with batch-dim=1 or [frames, feature-dim] matrix for
acoustic features only
@return: an 1-dimensional vector
"""
train_status = self.training
self.eval()
with torch.no_grad():
if isMatrix:
input = torch.tensor(input)
input = torch.unsqueeze(input, dim = 0)
input = input.transpose(1,2)
input = utils.to_device(self, input)
num_frames = input.shape[2]
num_split = (num_frames + maxChunk - 1) // maxChunk
split_size = num_frames // num_split
offset = 0
embedding_stats = 0.
for i in range(0, num_split-1):
this_embedding = function(self, input[:, :, offset:offset+split_size])
offset += split_size
embedding_stats += split_size*this_embedding
last_embedding = function(self, input[:, :, offset:])
embedding = (embedding_stats + (num_frames-offset) * last_embedding) / num_frames
if train_status:
self.train()
return torch.squeeze(embedding.transpose(1,2)).cpu()
return _wrapper
return wrapper
# Relation: activation -> components -> loss -> framework
## Framework
class TopVirtualNnet(torch.nn.Module):
"""This is a virtual nnet framework at top level and it is applied to the pipline scripts.
And you should implement four functions after inheriting this object.
@init(): just like pytorch needed. Note there is 'init' rather than '__init__'.
@forward(*inputs): just like pytorch needed.
@get_loss(*inputs, targets) : to support fetching the final loss from multi-loss.
@get_posterior(): to compute accuracy.
@extract_embedding(inputs, isMatrix=True) : needed if use pipline/onestep/extract_embeddings.py.
"""
def __init__(self, *args, **kwargs):
super(TopVirtualNnet, self).__init__()
params_dict = locals()
model_name = str(params_dict["self"]).split("()")[0]
args_str = utils.iterator_to_params_str(params_dict['args'])
kwargs_str = utils.dict_to_params_str(params_dict['kwargs'])
self.model_creation = "{0}({1},{2})".format(model_name, args_str, kwargs_str)
self.loss = None
self.use_step = False
self.transform_keys = []
self.rename_transform_keys = {}
self.init(*args, **kwargs)
def init(self, *args, **kwargs):
raise NotImplementedError
def get_model_creation(self):
return self.model_creation
# You could use this decorator if needed in class function overwriting
@utils.for_device_free
def forward(self, *inputs):
raise NotImplementedError
# You could use this decorator if needed in class function overwriting
@utils.for_device_free
def get_loss(self, *inputs, targets):
"""
@return: return a loss tensor, such as return from torch.nn.CrossEntropyLoss(reduction='mean')
e.g.:
m=Xvector(20,10)
loss=m.get_loss(m(inputs),targets)
model.get_loss [custom] -> loss.forward [custom]
|
v
model.get_accuracy [custom] -> loss.get_accuracy [custom] -> loss.compute_accuracy [static] -> loss.predict [static]
"""
return self.loss(*inputs, targets)
def get_posterior(self):
"""
@return: return posterior
"""
return self.loss.get_posterior()
@utils.for_device_free
def get_accuracy(self, targets):
"""
@return: return accuracy
"""
return self.loss.get_accuracy(targets)
def auto(self, layer, x):
"""It is convenient for forward-computing when layer could be None or not
"""
return layer(x) if layer is not None else x
def load_transform_state_dict(self, state_dict):
"""It is used in transform-learning.
"""
assert isinstance(self.transform_keys, list)
assert isinstance(self.rename_transform_keys, dict)
remaining = { utils.key_to_value(self.rename_transform_keys, k, False):v for k,v in state_dict.items() if k.split('.')[0] \
in self.transform_keys or k in self.transform_keys }
self.load_state_dict(remaining, strict=False)
return self
# We could use this decorator if needed when overwriting class function.
@for_extract_embedding(maxChunk=10000, isMatrix=True)
def extract_embedding(self, inputs):
""" If use the decorator, should note:
@inputs: a 3-dimensional tensor with batch-dim=1 or [frames, feature-dim] matrix for
acoustic features only
@return: an 1-dimensional vector
"""
raise NotImplementedError
@utils.for_device_free
def predict(self, outputs):
"""
@outputs: the outputs tensor with [batch-size,n,1] shape comes from affine before computing softmax or
just softmax for n classes
@return: an 1-dimensional vector including class-id (0-based) for prediction
"""
with torch.no_grad():
prediction = torch.squeeze(torch.argmax(outputs, dim=1))
return prediction
@utils.for_device_free
def compute_accuracy(self, outputs, targets):
"""
@outputs: the outputs tensor with [batch-size,n,1] shape comes from affine before computing softmax or
just softmax for n classes
@return: the float accuracy
"""
assert outputs.shape[0] == len(targets)
with torch.no_grad():
prediction = self.predict(outputs)
num_correct = (targets==prediction).sum()
return num_correct.item()/len(targets)
def step(self, epoch, this_iter, epoch_batchs):
pass
def backward_step(self, epoch, this_iter, epoch_batchs):
pass