-
Notifications
You must be signed in to change notification settings - Fork 130
/
Copy pathfusionBySvm.py
executable file
·164 lines (139 loc) · 4.6 KB
/
fusionBySvm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Copyright xmuspeech (Author:Snowdar 2018-09-18)
import sys,os,math
from sklearn import svm
from scipy import interpolate
import numpy as np
def sigmoid(x):
return 1/(1+np.exp(-x))
def getCDF(list):
x=[0]
y=[0]
print("[getCDF]Nums of values: %d"%(len(list)))
hist,bin_edges=np.histogram(list,normed=False,density=True)
x.extend(bin_edges[:len(bin_edges)-1])
x.append(1)
for i in range(1,len(hist)+1):
y.append(sum(hist[:i]*np.diff(bin_edges)[:i]))
y.append(1)
print("Range:%f -> %f"%(x[0],x[len(x)-1]))
return interpolate.interp1d(x,y,kind="quadratic")
# Compute Confidence as w
def computeC(s,f1,f2):
return np.abs(f1(s)-(1-f2(s)))
def getWvector(x,gamma):
w=[]
for i in range(0,len(x)):
w.append(computeC(x[i],gamma[0][i],gamma[1][i]))
return w
def load_data(data_path,n):
list=[]
print("Load data from "+data_path+"...")
with open(data_path,'r') as f:
content=f.readlines()
for line in content:
line=line.strip()
data_list=line.split()
if(n!=len(data_list)):
print('[error] the %s file has no %s fields'%(data_path,n))
exit(1)
if not data_list[0].startswith("#"):
list.append(data_list)
return list
#### main #####
options={
"write_weight":"",
"normalize":False,
"confidence":False}
n=1
for i in range(1,len(sys.argv)):
if sys.argv[i].startswith('--'):
parameter = sys.argv[i][2:].split("=")
if(parameter[1]=="true"):
options[parameter[0].replace("-","_")]=True
elif(parameter[1]=="false"):
options[parameter[0].replace("-","_")]=False
elif(parameter[1]!=""):
options[parameter[0].replace("-","_")]=parameter[1]
n+=1
if len(sys.argv)-n != 3 :
print('usage: '+sys.argv[0]+' [--write-weight="" | file-path ] <trials> <score-scp> <out-score>')
print('e.g.: '+sys.argv[0]+' --write-weight=test_1s/fusion.weight test_1s/trials test_1s/score.scp test_1s/fusion.score')
exit(1)
trials_file=sys.argv[n]
scp_file=sys.argv[n+1]
out_file=sys.argv[n+2]
trials=load_data(trials_file,3)
scp=load_data(scp_file,2)
trials_dict={}
for i in range(0,len(trials)):
trials_dict[trials[i][0]+" "+trials[i][1]]=trials[i][2]
score=[]
for i in range(0,len(scp)):
dict={}
temp=load_data(scp[i][1],3)
for j in range(0,len(temp)):
dict[temp[j][0]+" "+temp[j][1]]=float(temp[j][2]) if not options["normalize"] else sigmoid(float(temp[j][2]))
score.append(dict)
x=[]
y=[]
w=[]
print("Transform data to vector...")
for i in range(0,len(trials)):
temp=[]
for j in range(0,len(score)):
temp.append(score[j][trials[i][0]+" "+trials[i][1]])
x.append(temp)
if(trials_dict[trials[i][0]+" "+trials[i][1]]=="target"):
y.append(1)
else:
y.append(-1)
if(options["confidence"]==True):
print("Prapare data for CDF computation ...")
target=[]
nontarget=[]
for i in range(0,len(score)):
target.append([])
nontarget.append([])
for i in range(0,len(trials)):
for j in range(0,len(score)):
if(trials_dict[trials[i][0]+" "+trials[i][1]]=="target"):
target[j].append(score[j][trials[i][0]+" "+trials[i][1]])
else:
nontarget[j].append(score[j][trials[i][0]+" "+trials[i][1]])
print("Compute gamma for confidence...")
gamma=[[],[]] # index-0 -> target,index-1 -> nontarget
for i in range(0,len(score)):
gamma[0].append(getCDF(target[i]))
gamma[1].append(getCDF(nontarget[i]))
print("Computation done.")
else:
print("Train svm model...(it needs some time)...")
model = svm.SVC(kernel='linear', max_iter=-1,C=1,random_state= 777)
model.fit(x,y)
print("Training done.")
w=model.coef_[0]
b=model.intercept_[0]
if(options["write_weight"]!=""):
print("write weight to %s..."%(options["write_weight"]))
txt_w=w.tolist()
txt_b=0
file=open(options["write_weight"],"w+")
file.write("[ ")
for i in range(0,len(txt_w)):
file.write("%f "%(txt_w[i]))
file.write("%f ]\n"%(txt_b))
file.close()
print("weight as follows:")
print("w =",w,"\nb =",b)
print("\n")
print("Write fusion score to %s..."%(out_file))
f=open(out_file,"w+")
for i in range(0,len(trials)):
if(options["confidence"]==True):
w=getWvector(x[i],gamma)
value=np.dot(x[i],w)+b
f.write("%s %s %f\n"%(trials[i][0],trials[i][1],value))
f.close()
print("All done.")