Skip to content

Latest commit

 

History

History
316 lines (246 loc) · 13.6 KB

CHANGELOG.md

File metadata and controls

316 lines (246 loc) · 13.6 KB

简体中文 | English

版本更新信息

最新版本信息

2.4(03.24/2022)

  • PP-YOLOE:

    • 发布PP-YOLOE特色模型,l版本COCO test2017数据集精度51.4%,V100预测速度78.1 FPS,精度速度服务器端SOTA
    • 发布s/m/l/x系列模型,打通TensorRT、ONNX部署能力
    • 支持混合精度训练,训练较PP-YOLOv2加速33%
  • PP-PicoDet:

    • 发布PP-PicoDet优化模型,精度提升2%左右,CPU预测速度提升63%。
    • 新增参数量0.7M的PicoDet-XS模型
    • 后处理集成到网络中,优化端到端部署成本
  • 行人分析Pipeline:

    • 发布PP-Human行人分析Pipeline,覆盖行人检测、属性识别、行人跟踪、跨镜跟踪、人流量统计、动作识别多种功能,打通TensorRT部署
    • 属性识别支持StrongBaseline模型
    • ReID支持Centroid模型
    • 动作识别支持ST-GCN摔倒检测
  • 模型丰富度:

    • 发布YOLOX,支持nano/tiny/s/m/l/x版本,x版本COCO val2017数据集精度51.8%
  • 框架功能优化:

    • EMA训练速度优化20%,优化EMA训练模型保存方式
    • 支持infer预测结果保存为COCO格式
  • 部署优化:

    • RCNN全系列模型支持Paddle2ONNX导出ONNX模型
    • SSD模型支持导出时融合解码OP,优化边缘端部署速度
    • 支持NMS导出TensorRT,TensorRT部署端到端速度提升

2.3(11.03/2021)

  • 特色模型:

    • 检测: 轻量级移动端检测模型PP-PicoDet,精度速度达到移动端SOTA
    • 关键点: 轻量级移动端关键点模型PP-TinyPose
  • 模型丰富度:

    • 检测:

      • 新增Swin-Transformer目标检测模型
      • 新增TOOD(Task-aligned One-stage Object Detection)模型
      • 新增GFL(Generalized Focal Loss)目标检测模型
      • 发布Sniper小目标检测优化方法,支持Faster RCNN及PP-YOLO系列模型
      • 发布针对EdgeBoard优化的PP-YOLO-EB模型
    • 跟踪

      • 发布实时跟踪系统PP-Tracking
      • 发布FairMot高精度模型、小尺度模型和轻量级模型
      • 发布行人、人头和车辆实跟踪垂类模型库,覆盖航拍监控、自动驾驶、密集人群、极小目标等场景
      • DeepSORT模型适配PP-YOLO, PP-PicoDet等更多检测器
    • 关键点

      • 新增Lite HRNet模型
  • 预测部署:

    • YOLOv3系列模型支持NPU预测部署
    • FairMot模型C++预测部署打通
    • 关键点系列模型C++预测部署打通, Paddle Lite预测部署打通
  • 文档:

    • 新增各系列模型英文文档

2.2(08.10/2021)

  • 模型丰富度:

    • 发布Transformer检测模型:DETR、Deformable DETR、Sparse RCNN
    • 关键点检测新增Dark模型,发布Dark HRNet模型
    • 发布MPII数据集HRNet关键点检测模型
    • 发布人头、车辆跟踪垂类模型
  • 模型优化:

    • 旋转框检测模型S2ANet发布Align Conv优化模型,DOTA数据集mAP优化至74.0
  • 预测部署

    • 主流模型支持batch size>1预测部署,包含YOLOv3,PP-YOLO,Faster RCNN,SSD,TTFNet,FCOS
    • 新增多目标跟踪模型(JDE, FairMot, DeepSort) Python端预测部署支持,并支持TensorRT预测
    • 新增多目标跟踪模型FairMot联合关键点检测模型部署Python端预测部署支持
    • 新增关键点检测模型联合PP-YOLO预测部署支持
  • 文档:

    • Windows预测部署文档新增TensorRT版本说明
    • FAQ文档更新发布
  • 问题修复:

    • 修复PP-YOLO系列模型训练收敛性问题
    • 修复batch size>1时无标签数据训练问题

2.1(05.20/2021)

  • 模型丰富度提升:

    • 发布关键点模型HRNet,HigherHRNet
    • 发布多目标跟踪模型DeepSort, FairMot, JDE
  • 框架基础能力:

    • 支持无标注框训练
  • 预测部署:

    • Paddle Inference YOLOv3系列模型支持batch size>1预测
    • 旋转框检测S2ANet模型预测部署打通
    • 增加量化模型Benchmark
    • 增加动态图模型与静态图模型Paddle-Lite demo
  • 检测模型压缩:

    • 发布PPYOLO系列模型压缩模型
  • 文档:

    • 更新快速开始,预测部署等教程文档
    • 新增ONNX模型导出教程
    • 新增移动端部署文档

2.0(04.15/2021)

说明: 自2.0版本开始,动态图作为PaddleDetection默认版本,原dygraph目录切换为根目录,原静态图实现移动到static目录下。

  • 动态图模型丰富度提升:

    • 发布PP-YOLOv2及PP-YOLO tiny模型,PP-YOLOv2 COCO test数据集精度达到49.5%,V100预测速度达到68.9 FPS
    • 发布旋转框检测模型S2ANet
    • 发布两阶段实用模型PSS-Det
    • 发布人脸检测模型Blazeface
  • 新增基础模块:

    • 新增SENet,GhostNet,Res2Net骨干网络
    • 新增VisualDL训练可视化支持
    • 新增单类别精度计算及PR曲线绘制功能
    • YOLO系列模型支持NHWC数据格式
  • 预测部署:

    • 发布主要模型的预测benchmark数据
    • 适配TensorRT6,支持TensorRT动态尺寸输入,支持TensorRT int8量化预测
    • PP-YOLO, YOLOv3, SSD, TTFNet, FCOS, Faster RCNN等7类模型在Linux、Windows、NV Jetson平台下python/cpp/TRT预测部署打通:
  • 检测模型压缩:

    • 蒸馏:新增动态图蒸馏支持,并发布YOLOv3-MobileNetV1蒸馏模型
    • 联合策略:新增动态图剪裁+蒸馏联合策略压缩方案,并发布YOLOv3-MobileNetV1的剪裁+蒸馏压缩模型
    • 问题修复:修复动态图量化模型导出问题
  • 文档:

    • 新增动态图英文文档:包含首页文档,入门使用,快速开始,模型算法、新增数据集等
    • 新增动态图中英文安装文档
    • 新增动态图RCNN系列和YOLO系列配置文件模板及配置项说明文档

历史版本信息

2.0-rc(02.23/2021)

  • 动态图模型丰富度提升:

    • 优化RCNN模型组网及训练方式,RCNN系列模型精度提升(依赖Paddle develop或2.0.1版本)
    • 新增支持SSDLite,FCOS,TTFNet,SOLOv2系列模型
    • 新增行人和车辆垂类目标检测模型
  • 新增动态图基础模块:

    • 新增MobileNetV3,HRNet骨干网络
    • 优化RoIAlign计算逻辑,RCNN系列模型精度提升(依赖Paddle develop或2.0.1版本)
    • 新增支持Synchronized Batch Norm
    • 新增支持Modulated Deformable Convolution
  • 预测部署:

    • 发布动态图python、C++、Serving部署解决方案及文档,支持Faster RCNN,Mask RCNN,YOLOv3,PP-YOLO,SSD,TTFNet,FCOS,SOLOv2等系列模型预测部署
    • 动态图预测部署支持TensorRT模式FP32,FP16推理加速
  • 检测模型压缩:

    • 裁剪:新增动态图裁剪支持,并发布YOLOv3-MobileNetV1裁剪模型
    • 量化:新增动态图量化支持,并发布YOLOv3-MobileNetV1和YOLOv3-MobileNetV3量化模型
  • 文档:

    • 新增动态图入门教程文档:包含安装说明,快速开始,准备数据,训练/评估/预测流程文档
    • 新增动态图进阶教程文档:包含模型压缩、推理部署文档
    • 新增动态图模型库文档

v2.0-beta(12.20/2020)

  • 动态图支持:

    • 支持Faster-RCNN, Mask-RCNN, FPN, Cascade Faster/Mask RCNN, YOLOv3和SSD模型,试用版本。
  • 模型提升:

    • 更新PP-YOLO MobileNetv3 large和small模型,精度提升,并新增裁剪和蒸馏后的模型。
  • 新功能:

    • 支持VisualDL可视化数据预处理图片。
  • Bug修复:

    • 修复BlazeFace人脸关键点预测bug。

v0.5.0(11/2020)

  • 模型丰富度提升:

    • 发布SOLOv2系列模型,其中SOLOv2-Light-R50-VD-DCN-FPN 模型在单卡V100上达到 38.6 FPS,加速24% ,COCO验证集精度达到38.8%, 提升2.4绝对百分点。
    • 新增Android移动端检测demo,包括SSD、YOLO系列模型,可直接扫码安装体验。
  • 移动端模型优化:

    • 新增PACT新量化策略,YOLOv3-Mobilenetv3在COCO数据集上比普通量化相比提升0.7%。
  • 易用性提升及功能组件:

    • 增强generate_proposal_labels算子功能,规避模型出nan风险。
    • 修复deploy下python与C++预测若干问题。
    • 统一COCO与VOC数据集下评估流程,支持输出单类AP和P-R曲线。
    • PP-YOLO支持矩形输入图像。
  • 文档:

    • 新增目标检测全流程教程,新增Jetson平台部署教程。

v0.4.0(07/2020)

  • 模型丰富度提升:

    • 发布PPYOLO模型,COCO数据集精度达到45.2%,单卡V100预测速度达到72.9 FPS,精度和预测速度优于YOLOv4模型。
    • 新增TTFNet模型,base版本对齐竞品,COCO数据集精度达到32.9%。
    • 新增HTC模型,base版本对齐竞品,COCO数据集精度达到42.2%。
    • 新增BlazeFace人脸关键点检测模型,在Wider-Face数据集的Easy-Set精度达到85.2%。
    • 新增ACFPN模型, COCO数据集精度达到39.6%。
    • 发布服务器端通用目标检测模型(包含676类),相同策略在COCO数据集上,V100为19.5FPS时,COCO mAP可以达到49.4%。
  • 移动端模型优化:

    • 新增SSDLite系列优化模型,包括新增GhostNet的Backbone,新增FPN组件等,精度提升0.5%-1.5%。
  • 易用性提升及功能组件:

    • 新增GridMask, RandomErasing数据增强方法。
    • 新增Matrix NMS支持。
    • 新增EMA(Exponential Moving Average)训练支持。
    • 新增多机训练方法,两机相对于单机平均加速比80%,多机训练支持待进一步验证。

v0.3.0(05/2020)

  • 模型丰富度提升:

    • 添加Efficientdet-D0模型,速度与精度优于竞品。
    • 新增YOLOv4预测模型,精度对齐竞品;新增YOLOv4在Pascal VOC数据集上微调训练,精度达到85.5%。
    • YOLOv3新增MobileNetV3骨干网络,COCO数据集精度达到31.6%。
    • 添加Anchor-free模型FCOS,精度优于竞品。
    • 添加Anchor-free模型CornernetSqueeze,精度优于竞品,优化模型的COCO数据集精度38.2%, +3.7%,速度较YOLOv3-Darknet53快5%。
    • 添加服务器端实用目标检测模型CascadeRCNN-ResNet50vd模型,速度与精度优于竞品EfficientDet。
  • 移动端推出3种模型:

    • SSDLite系列模型:SSDLite-Mobilenetv3 small/large模型,精度优于竞品。
    • YOLOv3移动端方案: YOLOv3-MobileNetv3模型压缩后加速3.5倍,速度和精度均领先于竞品的SSDLite模型。
    • RCNN移动端方案:CascadeRCNN-MobileNetv3经过系列优化, 推出输入图像分别为320x320和640x640的模型,速度与精度具有较高性价比。
  • 预测部署重构:

    • 新增Python预测部署流程,支持RCNN,YOLO,SSD,RetinaNet,人脸系列模型,支持视频预测。
    • 重构C++预测部署,提高易用性。
  • 易用性提升及功能组件:

    • 增加AutoAugment数据增强。
    • 升级检测库文档结构。
    • 支持迁移学习自动进行shape匹配。
    • 优化mask分支评估阶段内存占用。

v0.2.0(02/2020)

  • 新增模型:
    • 新增基于CBResNet模型。
    • 新增LibraRCNN模型。
    • 进一步提升YOLOv3模型精度,基于COCO数据精度达到43.2%,相比上个版本提升1.4%。
  • 新增基础模块:
    • 主干网络: 新增CBResNet。
    • loss模块: YOLOv3的loss支持细粒度op组合。
    • 正则模块: 新增DropBlock模块。
  • 功能优化和改进:
    • 加速YOLOv3数据预处理,整体训练提速40%。
    • 优化数据预处理逻辑,提升易用性。
    • 增加人脸检测预测benchmark数据。
    • 增加C++预测引擎Python API预测示例。
  • 检测模型压缩 :
    • 裁剪: 发布MobileNet-YOLOv3裁剪方案和模型,基于VOC数据FLOPs - 69.6%, mAP + 1.4%,基于COCO数据FLOPS-28.8%, mAP + 0.9%; 发布ResNet50vd-dcn-YOLOv3裁剪方案和模型,基于COCO数据集FLOPS - 18.4%, mAP + 0.8%。
    • 蒸馏: 发布MobileNet-YOLOv3蒸馏方案和模型,基于VOC数据mAP + 2.8%,基于COCO数据mAP + 2.1%。
    • 量化: 发布YOLOv3-MobileNet和BlazeFace的量化模型。
    • 裁剪+蒸馏: 发布MobileNet-YOLOv3裁剪+蒸馏方案和模型,基于COCO数据FLOPS - 69.6%,基于TensorRT预测加速64.5%,mAP - 0.3 %; 发布ResNet50vd-dcn-YOLOv3裁剪+蒸馏方案和模型,基于COCO数据FLOPS - 43.7%,基于TensorRT预测加速24.0%,mAP + 0.6 %。
    • 搜索: 开源BlazeFace-Nas的完成搜索方案。
  • 预测部署:
    • 集成 TensorRT,支持FP16、FP32、INT8量化推理加速。
  • 文档:
    • 增加详细的数据预处理模块介绍文档以及实现自定义数据Reader文档。
    • 增加如何新增算法模型的文档。
    • 文档部署到网站: https://paddledetection.readthedocs.io

12/2019

  • 增加Res2Net模型。
  • 增加HRNet模型。
  • 增加GIOU loss和DIOU loss。

21/11/2019

  • 增加CascadeClsAware RCNN模型。
  • 增加CBNet,ResNet200和Non-local模型。
  • 增加SoftNMS。
  • 增加Open Image V5数据集和Objects365数据集模型。

10/2019

  • 增加增强版YOLOv3模型,精度高达41.4%。
  • 增加人脸检测模型BlazeFace、Faceboxes。
  • 丰富基于COCO的模型,精度高达51.9%。
  • 增加Objects365 2019 Challenge上夺冠的最佳单模型之一CACascade-RCNN。
  • 增加行人检测和车辆检测预训练模型。
  • 支持FP16训练。
  • 增加跨平台的C++推理部署方案。
  • 增加模型压缩示例。

2/9/2019

  • 增加GroupNorm模型。
  • 增加CascadeRCNN+Mask模型。

5/8/2019

  • 增加Modulated Deformable Convolution系列模型。

29/7/2019

  • 增加检测库中文文档
  • 修复R-CNN系列模型训练同时进行评估的问题
  • 新增ResNext101-vd + Mask R-CNN + FPN模型
  • 新增基于VOC数据集的YOLOv3模型

3/7/2019

  • 首次发布PaddleDetection检测库和检测模型库
  • 模型包括:Faster R-CNN, Mask R-CNN, Faster R-CNN+FPN, Mask R-CNN+FPN, Cascade-Faster-RCNN+FPN, RetinaNet, YOLOv3, 和SSD.