Skip to content

Releases: SimonBlanke/Hyperactive

v2.0.0

16 Jul 10:09
Compare
Choose a tag to compare

API-change to improve usage. Class accepts training data. "search"-method accepts search_config and other optimization-run specific arguments like n_iter, n_jobs, optimizer.

v1.1.1

08 Oct 17:31
Compare
Choose a tag to compare
  • small api-change
  • extend progress bar information
  • re-enable multiprocessing for new api

v1.0.0

25 Sep 07:11
Compare
Choose a tag to compare
  • new API that creates model by function and search space by dict
  • enables more flexible usage (e.g. free use of framework, ensembles, nn-structure)
  • 100% test coverage

v0.4.2

09 Sep 13:24
Compare
Choose a tag to compare
  • performance fixes for bayesian optimization and parallel tempering
  • better default parameter for most optimizers
  • better implementation for metrics
  • add support for catboost
  • integration of meta-learn code into hyperactive
  • cleanup to avoid similar code

v0.4.1.2

31 Jul 06:41
Compare
Choose a tag to compare
  • k-fold-cross validation works with keras models
  • a cv of < 1 trains the model on a fraction of the training data and tests on the rest
  • better testing and code-coverage
  • fix of score and predict method

v0.4.0

23 Jul 17:12
Compare
Choose a tag to compare
  • improvement of optimizer class structure
  • lower memory usage
  • add testing of optimization process
  • a lot of clean up und several bug fixes (mostly parallel tempering)

v0.3.5

18 Jul 12:31
Compare
Choose a tag to compare
  • improved scatter initialization
  • remove small bug in random seed
  • add basic test

v0.3.4

10 Jul 14:49
Compare
Choose a tag to compare
  • add tabu search
  • add parallel tempering
  • add bayesian optimization

v0.3.3

06 Jul 13:36
Compare
Choose a tag to compare
  • add stochastic hill climbing
  • random restart hill climbing
  • stochastic tunneling

v0.3.2

04 Jul 14:32
Compare
Choose a tag to compare
  • set memory to true
  • add hill climbing algorithm
  • add random annealing algorithm