-
Notifications
You must be signed in to change notification settings - Fork 3
/
restranmap.py
212 lines (163 loc) · 6.42 KB
/
restranmap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
"""Class for the Transformer based feature map, upon ResNet and IBN-Net
Shengcai Liao and Ling Shao, "Transformer-Based Deep Image Matching for Generalizable Person Re-identification."
In arXiv preprint, arXiv:2105.14432, 2021.
Author:
Shengcai Liao
Version:
V1.0
May 25, 2021
"""
from __future__ import absolute_import
import copy
from typing import Optional, Any
import torch
from torch import Tensor
from torch import nn
from torch.nn import Module, ModuleList
import torchvision
from torch.nn.modules import TransformerEncoderLayer
fea_dims_small = {'layer2': 128, 'layer3': 256, 'layer4': 512}
fea_dims = {'layer2': 512, 'layer3': 1024, 'layer4': 2048}
class TransformerEncoder(Module):
r"""TransformerEncoder is a stack of N encoder layers
Args:
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
num_layers: the number of sub-encoder-layers in the encoder (required).
norm: the layer normalization component (optional).
Examples::
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
>>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6)
>>> src = torch.rand(10, 32, 512)
>>> out = transformer_encoder(src)
"""
__constants__ = ['norm']
def __init__(self, encoder_layer, num_layers, norm=None):
super(TransformerEncoder, self).__init__()
self.layers = _get_clones(encoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
def forward(self, src: Tensor, mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None) -> Tensor:
r"""Pass the input through the encoder layers in turn.
Args:
src: the sequence to the encoder (required).
mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
Shape:
see the docs in Transformer class.
"""
output = src
outputs = []
for mod in self.layers:
output = mod(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask)
outputs.append(output)
if self.norm is not None:
for i in len(outputs):
outputs[i] = self.norm(outputs[i])
outputs = torch.cat(outputs, dim=-1)
return outputs
class ResNet(nn.Module):
__factory = {
18: torchvision.models.resnet18,
34: torchvision.models.resnet34,
50: torchvision.models.resnet50,
101: torchvision.models.resnet101,
152: torchvision.models.resnet152,
}
def __init__(self, depth, ibn_type=None, final_layer='layer3', neck=512,
nhead=1, num_encoder_layers=2, dim_feedforward=2048, dropout=0., pretrained=True):
super(ResNet, self).__init__()
self.depth = depth
self.final_layer = final_layer
self.neck = neck
self.pretrained = pretrained
if depth not in ResNet.__factory:
raise KeyError("Unsupported depth: ", depth)
if ibn_type is not None and depth == 152:
raise KeyError("Unsupported IBN-Net depth: ", depth)
if ibn_type is None:
# Construct base (pretrained) resnet
print('\nCreate ResNet model ResNet-%d.\n' % depth)
self.base = ResNet.__factory[depth](pretrained=pretrained)
else:
# Construct base (pretrained) IBN-Net
model_name = 'resnet%d_ibn_%s' % (depth, ibn_type)
print('\nCreate IBN-Net model %s.\n' % model_name)
self.base = torch.hub.load('XingangPan/IBN-Net', model_name, pretrained=pretrained)
if depth < 50:
out_planes = fea_dims_small[final_layer]
else:
out_planes = fea_dims[final_layer]
if neck > 0:
self.neck_conv = nn.Conv2d(out_planes, neck, kernel_size=3, padding=1)
out_planes = neck
self.encoder = None
if num_encoder_layers > 0:
encoder_layer = TransformerEncoderLayer(out_planes, nhead, dim_feedforward, dropout)
encoder_norm = None
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
self.num_features = out_planes
def forward(self, inputs):
x = inputs
for name, module in self.base._modules.items():
x = module(x)
if name == self.final_layer:
break
if self.neck > 0:
x = self.neck_conv(x)
out = x.permute(0, 2, 3, 1) # [b, h, w, c]
if self.encoder is not None:
b, c, h, w = x.size()
y = x.view(b, c, -1).permute(2, 0, 1) # [hw, b, c]
y = self.encoder(y)
y = y.permute(1, 0, 2).reshape(b, h, w, -1) # [b, h, w, c]
out = torch.cat((out, y), dim=-1)
return out
def resnet18(**kwargs):
return ResNet(18, **kwargs)
def resnet34(**kwargs):
return ResNet(34, **kwargs)
def resnet50(**kwargs):
return ResNet(50, **kwargs)
def resnet101(**kwargs):
return ResNet(101, **kwargs)
def resnet152(**kwargs):
return ResNet(152, **kwargs)
__factory = {
'resnet18': resnet18,
'resnet34': resnet34,
'resnet50': resnet50,
'resnet101': resnet101,
'resnet152': resnet152,
}
def names():
return sorted(__factory.keys())
def create(name, *args, **kwargs):
"""
Create a model instance.
Parameters
----------
name : str
Model name. Can be one of 'resnet18', 'resnet34',
'resnet50', 'resnet101', and 'resnet152'.
pretrained : bool, optional
If True, will use ImageNet pretrained model.
Default: True
final_layer : str
Which layer of the resnet model to use. Can be either of 'layer2', 'layer3', or 'layer4'.
Default: 'layer3'
neck : int
The number of convolutional channels appended to the final layer. Negative number or 0 means skipping this.
Default: 128
"""
if name not in __factory:
raise KeyError("Unknown model:", name)
return __factory[name](*args, **kwargs)
def _get_clones(module, N):
return ModuleList([copy.deepcopy(module) for i in range(N)])
if __name__ == '__main__':
inputs = torch.rand([64, 3, 384, 128])
net = create('resnet50', final_layer='layer3', neck=128, num_encoder_layers=6)
print(net)
out = net(inputs)
print(out.size())