-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
56 lines (51 loc) · 2.04 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from textSummarizer.pipeline.stage_01_data_ingestion import DataIngestionTrainingPipeline
from textSummarizer.pipeline.stage_02_data_validation import DataValidationTrainingPipeline
from textSummarizer.pipeline.stage_03_data_transformation import DataTransformationTrainingPipeline
from textSummarizer.pipeline.stage_04_model_trainer import ModelTrainerTrainingPipeline
from textSummarizer.pipeline.stage_05_model_evaluation import ModelEvaluationTrainingPipeline
from textSummarizer.logging import logger
STAGE_NAME= "Data Ingestion stage"
try:
logger.info(f">>>> stage {STAGE_NAME} started <<<<<")
data_ingestion= DataIngestionTrainingPipeline()
data_ingestion.main()
logger.info(f">>>>> stage {STAGE_NAME} completed <<<<<<<\n\nx========x")
except Exception as e:
logger.exception(e)
raise e
STAGE_NAME= "Data Validation stage"
try:
logger.info(f">>>> stage {STAGE_NAME} started <<<<<")
data_validation= DataValidationTrainingPipeline()
data_validation.main()
logger.info(f">>>>> stage {STAGE_NAME} completed <<<<<<<\n\nx========x")
except Exception as e:
logger.exception(e)
raise e
STAGE_NAME= "Data Transformation stage"
try:
logger.info(f">>>> stage {STAGE_NAME} started <<<<<")
data_transformation= DataTransformationTrainingPipeline()
data_transformation.main()
logger.info(f">>>>> stage {STAGE_NAME} completed <<<<<<<\n\nx========x")
except Exception as e:
logger.exception(e)
raise e
STAGE_NAME= "Model Trainer stage"
try:
logger.info(f">>>> stage {STAGE_NAME} started <<<<<")
model_trainer= ModelTrainerTrainingPipeline()
model_trainer.main()
logger.info(f">>>>> stage {STAGE_NAME} completed <<<<<<<\n\nx========x")
except Exception as e:
logger.exception(e)
raise e
STAGE_NAME= "Model Evaluation stage"
try:
logger.info(f">>>> stage {STAGE_NAME} started <<<<<")
model_trainer= ModelEvaluationTrainingPipeline()
model_trainer.main()
logger.info(f">>>>> stage {STAGE_NAME} completed <<<<<<<\n\nx========x")
except Exception as e:
logger.exception(e)
raise e