Skip to content

Latest commit

 

History

History
58 lines (46 loc) · 2.87 KB

README.md

File metadata and controls

58 lines (46 loc) · 2.87 KB

VRVO

This is the official PyTorch implementation for [Towards Scale Consistent Monocular Visual Odometry by Learning from the Virtual World], ICRA 2022

If you find this work useful in your research, please consider citing our paper:

@inproceedings{zhang2022towards,
  title={Towards scale consistent monocular visual odometry by learning from the virtual world},
  author={Zhang, Sen and Zhang, Jing and Tao, Dacheng},
  booktitle={2022 International Conference on Robotics and Automation (ICRA)},
  pages={5601--5607},
  year={2022},
  organization={IEEE}
}
  • This project is developed under python 3.6 and pytorch 1.3.1

  • Our re-implemented DVSO (C++) is released at https://github.com/SenZHANG-GitHub/DVSO

    • You will need this repo in stage 4: DVSO_Finetune
    • Yang, Nan, et al. "Deep virtual stereo odometry: Leveraging deep depth prediction for monocular direct sparse odometry." Proceedings of the European conference on computer vision (ECCV). 2018.

Usage

  • Stage 1: PTNet_Baseline pretraining (main_PTNet.py)
    • --num_layers_T --stereo_mode --vbaseline --predict_right_disp
  • Stage 2: Gen_Baseline pretraining (main_DVSO.py)
    • --num_layers_G --netG_mode
  • Stage 3: Domain adaptation joint training (main.py)
    • --num_layers_G --num_layers_T
    • --kitti_folder matters!
      • "Kitti" will use Eigen split (Deprecated!)
      • "Kitti-Zhan" will use seq 00-08 for training/val and 09-10 for test (Default now!)
  • Stage 4: DVSO_Finetune (main_DVSO.py)
    • --dvso_epochs --dvso_train_seqs --dvso_test_seqs --dvso_resume_exp --dvso_resume_iter --dvso_home_path
    • --dvso_param (wStereoPosFlag wCorrectedFlag wGradFlag wStereo scaleENergyLeftTHR scaleWJI2SumTHR warpright checkWarpValid maskWarpGrad)
    • If we only want to finetune netT while fixing netG and netD
      • --dvso_netT_only
      • If we further want to use only real dataset during dvso finetuning and --dvso_netT_only
        • --dvso_real_only
    • If we want to use dvso's sparse depth maps for supervision
      • --use_dvso_depth --dvso_depth_weight
    • If we want to maintain the intermediate disparities rather than cleaning them to save space
      • --dvso_maintain_disp
    • If we only want to test the model (--dvso_resume_exp --dvso_resume_iter) and then quit
      • --dvso_test_only
    • If we want to use L2 loss for dvso axisangle and translation vec6 poses
      • --use_pose_loss --rot_weight --trans_weight
    • If we want to use dvso poses for temporal photometric consistency loss
      • --use_dvso_photo --dvso_photo_weight

Acknowledgment

This repo is built upon the excellent works of SharinGAN, [monodepth]https://github.com/mrharicot/monodepth), and monodepth2. The borrowed codes are licensed under the original license respectively.