forked from moliusimon/csdm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_csdm_bu4dfep.py
78 lines (61 loc) · 2.99 KB
/
main_csdm_bu4dfep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from load_bu4dfep import load_bu4dfep
from eval import evaluate_results
from cascaded.cascade.csdm_rotate import CascadeCsdmRotate as CascadeMethod
from cascaded.toolkit.mirror import mirror_instances
import numpy as np
import cPickle
def augmenter(images, inits, cascade, n_augs):
inits = np.tile(cascade._decode_parameters(inits), (n_augs, 1, 1))
angles = np.random.uniform(low=-np.pi/4.0, high=np.pi/4.0, size=len(inits))
disps = np.random.uniform(low=0.95, high=1.05, size=(len(inits), 2))
scales = np.random.uniform(low=0.9, high=1.1, size=len(inits))
mapping = np.tile(np.array(range(len(images)), dtype=np.int32), (n_augs,))
for i in range(len(inits)):
an, sc, dx, dy = angles[i], scales[i], disps[i][0], disps[i][1]
mn = np.mean(inits[i, ...], axis=0)[None, :]
inits[i, ...] = np.dot(
inits[i, ...] - mn,
sc * np.array([[np.cos(an), -np.sin(an)], [np.sin(an), np.cos(an)]], dtype=np.float32)
) + mn * [dx, dy]
return cascade._encode_parameters(inits), mapping
def train_model(fpath, data, n_steps=5, savefile=None):
data['images'], data['landmarks'] = mirror_instances(
data['images'], data['landmarks'],
range(16, 26) + range(0, 8) + range(36, 42) + [60, 61, 67, 59, 58, 48, 49, 50] + range(68, 75),
range(26, 36) + range(8, 16) + range(47, 41, -1) + [64, 63, 65, 55, 56, 54, 53, 52] + range(82, 75, -1)
)
model = CascadeMethod(
num_bases=5,
variance=0.85
) if savefile is None else cPickle.load(open(savefile, 'rb'))
model.train(
data['images'],
data['landmarks'][:, :, :2],
n_steps=n_steps,
save_as=fpath,
continue_previous=(savefile is not None),
)
# Save model to file
cPickle.dump(model, open(fpath, 'wb'), cPickle.HIGHEST_PROTOCOL)
return model
def validate_model(mpath, rpath, data, steps=None):
model = cPickle.load(open(mpath, 'rb'))
predictions = model.align(data['images'], num_steps=steps, save_all=True)
cPickle.dump(predictions, open(rpath, 'wb'), cPickle.HIGHEST_PROTOCOL)
return predictions
def evaluate(mpath, rpath, data):
predictions = cPickle.load(open(rpath, 'rb'))
model = cPickle.load(open(mpath, 'rb'))
for preds in predictions[0]:
n_inst, n_pars = len(data['images']), preds[0].shape[1]
preds = np.mean(preds[0].reshape((-1, n_inst, n_pars)), axis=0)
print "MEE: " + str(evaluate_results(model, data['images'], data['landmarks'], preds, lmk_l=[0, 4], lmk_r=[8, 12]))
if __name__ == '__main__':
# Load data and partition indices
model_file, results_file = ('continuous_bu4dfep.pkl', 'continuous_bu4dfep_results.pkl')
path = '/home/cvc/moliu/Datasets/bu4dfe+/'
data = load_bu4dfep(path)
# Train model, validate, evaluate results
train_model(path+model_file, data['train'], n_steps=10, savefile=None)
validate_model(path+model_file, path+results_file, data['test'])
evaluate(path+model_file, path+results_file, data['test'])