-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathModelEvaluator.lua
112 lines (95 loc) · 4.06 KB
/
ModelEvaluator.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
require 'Loader'
require 'Mapper'
require 'torch'
require 'xlua'
local threads = require 'threads'
require 'SequenceError'
local ModelEvaluator = torch.class('ModelEvaluator')
local loader
function ModelEvaluator:__init(isGPU, datasetPath, mapper, testBatchSize, logsPath)
loader = Loader(datasetPath, mapper)
self.testBatchSize = testBatchSize
self.nbOfTestIterations = math.ceil(loader.size / testBatchSize)
self.indexer = indexer(datasetPath, testBatchSize)
self.pool = threads.Threads(1, function() require 'Loader' end)
self.mapper = mapper
self.logsPath = logsPath
self.suffix = '_' .. os.date('%Y%m%d_%H%M%S')
self.sequenceError = SequenceError()
self.input = torch.Tensor()
self.isGPU = isGPU
if isGPU then
self.input = self.input:cuda()
end
end
function ModelEvaluator:runEvaluation(model, verbose, epoch)
local spect_buf, label_buf, sizes_buf
-- get first batch
local inds = self.indexer:nextIndices()
self.pool:addjob(function()
return loader:nextBatch(inds)
end,
function(spect, label, sizes)
spect_buf = spect
label_buf = label
sizes_buf = sizes
end)
if verbose then
local f = assert(io.open(self.logsPath .. 'WER_Test' .. self.suffix .. '.log', 'a'), "Could not create validation test logs, does the folder "
.. self.logsPath .. " exist?")
f:write('======================== BEGIN WER TEST EPOCH: ' .. epoch .. ' =========================\n')
f:close()
end
local evaluationPredictions = {} -- stores the predictions to order for log.
local cumCER = 0
local cumWER = 0
local numberOfSamples = 0
-- ======================= for every test iteration ==========================
for i = 1, self.nbOfTestIterations do
-- get buf and fetch next one
self.pool:synchronize()
local inputsCPU, targets, sizes_array = spect_buf, label_buf, sizes_buf
inds = self.indexer:nextIndices()
self.pool:addjob(function()
return loader:nextBatch(inds)
end,
function(spect, label, sizes)
spect_buf = spect
label_buf = label
sizes_buf = sizes
end)
self.input:resize(inputsCPU:size()):copy(inputsCPU)
local predictions = model:forward(self.input)
if self.isGPU then cutorch.synchronize() end
local size = predictions:size(1)
for j = 1, size do
local prediction = predictions[j]
local predict_tokens = self.mapper:decodeOutput(prediction)
local targetTranscript = self.mapper:tokensToText(targets[j])
local predictTranscript = self.mapper:tokensToText(predict_tokens)
local CER = self.sequenceError:calculateCER(targetTranscript, predictTranscript)
local WER = self.sequenceError:calculateWER(targetTranscript, predictTranscript)
cumCER = cumCER + CER
cumWER = cumWER + WER
table.insert(evaluationPredictions, { wer = WER * 100, cer = CER * 100, target = targetTranscript, prediction = predictTranscript })
end
numberOfSamples = numberOfSamples + size
end
local function comp(a, b) return a.wer < b.wer end
table.sort(evaluationPredictions, comp)
if verbose then
for index, eval in ipairs(evaluationPredictions) do
local f = assert(io.open(self.logsPath .. 'Evaluation_Test' .. self.suffix .. '.log', 'a'))
f:write(string.format("WER = %.2f | CER = %.2f | Text = \"%s\" | Predict = \"%s\"\n",
eval.wer, eval.cer, eval.target, eval.prediction))
f:close()
end
end
local averageWER = cumWER / numberOfSamples
local averageCER = cumCER / numberOfSamples
local f = assert(io.open(self.logsPath .. 'Evaluation_Test' .. self.suffix .. '.log', 'a'))
f:write(string.format("Average WER = %.2f | CER = %.2f", averageWER * 100, averageCER * 100))
f:close()
self.pool:synchronize() -- end the last loading
return averageWER, averageCER
end