-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpolynomial.go
836 lines (636 loc) · 18.5 KB
/
polynomial.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
package polygo
import (
"fmt"
"hash/fnv"
"log"
"math"
"strconv"
"strings"
"github.com/mjibson/go-dsp/fft"
)
// A Poly represents a univariate real polynomial.
//
// Note: in the documentation for each method of Poly, we refer to the receiver instance as "p".
type Poly struct {
coef []float64
len int
deg int
}
// NewPoly returns a polynomial p with the given coefficients.
//
// Let c = coefficients and let n = len(c). Then, p is defined by
//
// - p(x) = c[0]x^(n-1) + c[1]x^(n-2) + ... + c[n-2]x^1 + c[n-1]x^0.
//
// # Examples:
// - NewPoly([]float64{3, -1, 4}) represents p(x) = 3x^2 - x + 4.
// - NewPoly([]float64{0}) represents p(x) = 0.
// - NewPoly([]float64{0, 0, 0, 2, 0, 0, 7, 0, 0, 1}) represents p(x) = 2x^6 + 7x^3 + 1.
//
// Panics if coefficients slice is empty.
func NewPoly(coefficients []float64) Poly {
if len(coefficients) == 0 {
// When dealing with invalid inputs, polygo will not use the
// "return error" convention in order to keep user code less
// cluttered. Instead, functions will panic (as opposed to Fatal,
// since Fatal calls os.exit(1), whereas panic works it's way up
// the call stack and returns a useful stacktrace so we know where
// things are going wrong).
log.Panic("NewPoly: empty coefficients slice.")
}
// Makes things easier internally to have the degree of a term be the index of its coefficient,
// so we reverse the coefficients slice.
//
// Also, we don't want to deal with arbitrary lengths of leading zeroes in the code. So, we
// strip the leading zeroes. This also guarantees that the degree of the polynomial is the
// length of the coefficient slice minus 1 (which also happens to be the largest index of the
// coefficient slice).
coefficients = removeTrailingZeroes(reverse(coefficients))
coefLen := len(coefficients)
ret := Poly{
coef: coefficients,
len: coefLen,
deg: coefLen - 1,
}
return ret
}
// newPolyNoReverse is just NewPoly but with no coefficient slice reversal.
//
// This is needed because we internally represent coefs as a slice with increasing degree, whereas
// the user interacts with coefs slices with decreasing degree. So, having this function allows us
// to return new Polys without having to compensate for the difference in representation.
//
// Doesn't do the empty panic check like in NewPoly().
func newPolyNoReverse(coefficients []float64) Poly {
coefficients = removeTrailingZeroes(coefficients)
coefLen := len(coefficients)
ret := Poly{
coef: coefficients,
len: coefLen,
deg: coefLen - 1,
}
return ret
}
// parseTerm returns the coefficient and exponent of a term in string form "(+|-)cx^n".
//
// Panics for invalid terms.
func parseTerm(t string) (float64, int) {
var xpos, caratpos int
var sign, coef float64
var deg int64
var err error
if t[0] == '+' {
sign = float64(1.0)
} else {
sign = float64(-1.0)
}
t = t[1:]
xpos = strings.IndexByte(t, 'x')
caratpos = strings.IndexByte(t, '^')
// deg(t) = 0 or 1 (at least '^' is missing).
if caratpos == -1 {
// deg(t) = 0 ('^' and 'x' are missing).
if xpos == -1 {
if coef, err = strconv.ParseFloat(t, 64); err != nil {
log.Panicf("parseTerm: could not parse deg 0 term coefficient \"%s\" (%v).",
t, err)
}
return sign * coef, 0
}
// deg(t) = 1 (Only '^' is missing).
if t[:xpos] == "" {
coef = 1
} else if coef, err = strconv.ParseFloat(t[:xpos], 64); err != nil {
log.Panicf("parseTerm: could not parse deg 1 term coefficient \"%s\" (%v).",
t[:xpos], err)
}
return sign * coef, 1
}
// deg(t) > 1.
if deg, err = strconv.ParseInt(t[caratpos+1:], 10, 64); err != nil {
log.Panicf("parseTerm: could not parse exponent \"%s\" (%v).", t[caratpos+1:], err)
}
if t[:xpos] == "" {
coef = 1
} else if coef, err = strconv.ParseFloat(t[:xpos], 64); err != nil {
log.Panicf("parseTerm: could not parse deg %d term coefficient %s (%v).", deg, t, err)
}
return sign * coef, int(deg)
}
// NewPolyFromString returns a polynomial represented by s.
//
// # Format:
// - Terms (without sign) have the form "cx^n", with c real and n natural (including 0).
// - Aside from the leading term, all terms must be prefixed (spaces ignored) by a "+" or a "-"
// denoting the sign of the term. The user may choose to omit the sign on the leading term,
// in which case it is assumed to be positive.
// - Terms do not need to be ordered, nor does the user have to include terms with coefficient
// zero.
// - The user may include multiple terms of the same degree.
//
// # Examples:
// - NewPolyFromString("5") represents p(x) = 5
// - NewPolyFromString("- 4 + 3x^2 - 2x") represents p(x) = 3x^2 - 2x - 4.
// - NewPolyFromString("5x^10 + 0x^9 - 6x + 3x^2 - 2x") represents p(x) = 5x^10 + 3x^2 - 8x.
//
// Panics on empty or invalid strings.
func NewPolyFromString(s string) Poly {
if s == "" {
log.Panic("NewPolyFromString: empty string.")
}
// Manually insert implicit leading plus if the first non-whitespace
// char is not "+" or "-".
i := 0
for s[i] == ' ' && i < len(s) {
i++
}
if !plusOrMinus(rune(s[i])) {
s = "+" + s
}
coefs := []float64{}
var coef float64
var deg int
var termsb strings.Builder
for _, c := range s {
if c != ' ' {
if plusOrMinus(c) && termsb.Len() != 0 {
coef, deg = parseTerm(termsb.String())
coefs = expand(coefs, deg+1)
coefs[deg] += coef
termsb.Reset()
}
termsb.WriteRune(c)
}
}
coef, deg = parseTerm(termsb.String())
coefs = expand(coefs, deg+1)
coefs[deg] += coef
return newPolyNoReverse(coefs)
}
// NewPolyConst returns the polynomial p(x) = a.
func NewPolyConst(a float64) Poly {
return newPolyNoReverse([]float64{a})
}
// NewPolyZero returns the polynomial p(x) = 0.
func NewPolyZero() Poly {
return NewPolyConst(0)
}
// NewPolyLinear returns the polynomial p(x) = ax + b.
func NewPolyLinear(a, b float64) Poly {
return newPolyNoReverse([]float64{b, a})
}
// NewPolyQuadratic returns the polynomial p(x) = ax^2 + bx + c.
func NewPolyQuadratic(a, b, c float64) Poly {
return newPolyNoReverse([]float64{c, b, a})
}
// NewPolyCubic returns the polynomial p(x) = ax^3 + bx^2 + cx + d.
func NewPolyCubic(a, b, c, d float64) Poly {
return newPolyNoReverse([]float64{d, c, b, a})
}
// NewPolyWilkinson returns Wilkinson's polynomial.
func NewPolyWilkinson() Poly {
return NewPoly([]float64{
1,
-210,
20615,
-1256850,
53327946,
-1672280820,
40171771630,
-756111184500,
11310276995381,
-135585182899530,
1307535010540395,
-10142299865511450,
63030812099294896,
-311333643161390640,
1206647803780373360,
-3599979517947607200,
8037811822645051776,
-12870931245150988800,
13803759753640704000,
-8752948036761600000,
2432902008176640000},
)
}
// NewPolyFactored returns the polynomial
//
// p(x) = a(x - r[0])(x - r[1])...(x - r[n - 1]),
//
// where n = len(r).
//
// Panics for empty r.
func NewPolyFactored(a float64, r []float64) Poly {
if len(r) == 0 {
log.Panic("NewPolyFactored: empty r.")
}
if a == 0 {
return NewPolyZero()
}
prod := newPolyNoReverse([]float64{-r[0], 1})
r = r[1:]
for _, b := range r {
prod = prod.Mul(newPolyNoReverse([]float64{-b, 1}))
}
return prod.MulScalar(a)
}
// NewPolyTaylorSin returns the Taylor polynomial of the sine function centered at a with degree n.
//
// Panics for negative n.
func NewPolyTaylorSin(n int, a float64) Poly {
if n < 0 {
log.Panic("NewPolyTaylorSin: negative n.")
}
if n == 0 {
return NewPolyConst(math.Sin(a))
}
sina := math.Sin(a)
cosa := math.Cos(a)
derivCycle := [4]float64{
sina,
cosa,
-sina,
-cosa,
}
sum := NewPolyZero()
for i := 0; i <= n; i++ {
sum = sum.Add(NewPolyLinear(1, -a).Pow(i).MulScalar(derivCycle[i%4] / fact(i)))
}
return sum
}
// NewPolyChebyshev1 returns the nth Chebyshev polynomial of the first kind.
//
// Panics for negative n.
func NewPolyChebyshev1(n int) Poly {
if n < 0 {
log.Panic("NewPolyChebyshev1: negative n.")
}
if n == 0 {
return NewPolyConst(1)
}
if n == 1 {
return NewPolyLinear(1, 0)
}
return NewPolyLinear(2, 0).Mul(NewPolyChebyshev1(n - 1)).Sub(NewPolyChebyshev1(n - 2))
}
// NewPolyChebyshev2 returns the nth Chebyshev polynomial of the second kind.
//
// Panics for negative n.
func NewPolyChebyshev2(n int) Poly {
if n < 0 {
log.Panic("NewPolyChebyshev2: negative n.")
}
if n == 0 {
return NewPolyConst(1)
}
if n == 1 {
return NewPolyLinear(2, 0)
}
return NewPolyLinear(2, 0).Mul(NewPolyChebyshev2(n - 1)).Sub(NewPolyChebyshev2(n - 2))
}
// NewPolyLegendre returns the nth Legendre polynomial.
//
// Panics for negative n.
func NewPolyLegendre(n int) Poly {
if n < 0 {
log.Panic("NewPolyLegendre: negative n.")
}
// Implement Rodrigues' formula.
ddxpn := NewPolyQuadratic(1, 0, -1).Pow(n).DerivativeN(n)
return ddxpn.MulScalar(1 / (fact(n) * math.Pow(2, float64(n))))
}
// NewPolyLaguerre returns the nth Laguerre polynomial.
//
// Panics for negative n.
func NewPolyLaguerre(n int) Poly {
if n < 0 {
log.Panic("NewPolyLaguerre: negative n.")
}
coefs := make([]float64, n+1)
sgn := 1.0
for k := 0; k <= n; k++ {
coefs[k] = choose(n, k) * sgn / fact(k)
sgn *= -1
}
return newPolyNoReverse(coefs)
}
// Coefficients returns the coefficients c of p ordered in decreasing degree.
func (p Poly) Coefficients() []float64 {
return reverse(p.coef)
}
// Degree returns the degree of p.
func (p Poly) Degree() int {
return p.deg
}
// LeadingCoefficient returns the coefficient of the highest-degreed term in p.
func (p Poly) LeadingCoefficient() float64 {
return p.coef[p.deg]
}
// LargestCoefficient returns the largest coefficient in p.
func (p Poly) LargestCoefficient() float64 {
return max(p.coef)
}
// SmallestCoefficient returns the smallest coefficient in p.
func (p Poly) SmallestCoefficient() float64 {
return min(p.coef)
}
// CoefficientWithDegree returns the coefficient of the term with degree n in p.
func (p Poly) CoefficientWithDegree(n uint) float64 {
// Coefficients of terms with degrees larger than that of p are
// zero by definition.
if n > uint(p.deg) {
return 0.0
}
return p.coef[n]
}
// Equal returns true if the p is equal to q (all corresponding coefficients are equal), else false.
func (p Poly) Equal(q Poly) bool {
if p.deg != q.deg {
return false
}
for i := 0; i < p.len; i++ {
if p.coef[i] != q.coef[i] {
return false
}
}
return true
}
// EqualRel returns true if p and q are equal with some maximum relative error epsilon (all
// corresponding coefficients have relative error at most epsilon), else false.
func (p Poly) EqualRel(q Poly, epsilon float64) bool {
if p.deg != q.deg {
return false
}
for i := 0; i < p.len; i++ {
if !equalRel(p.coef[i], q.coef[i], epsilon) {
return false
}
}
return true
}
// IsConstant returns true p is constant (i.e. deg(p) = 0), else false.
func (p Poly) IsConstant() bool {
return p.deg == 0
}
// IsZero returns true if p(x) = 0, else false.
func (p Poly) IsZero() bool {
// Check if p is a constant and if that constant is 0.
return p.deg == 0 && p.coef[0] == 0
}
// IsZeroRel returns true if the largest relative difference between p and 0 is epsilon, else false.
func (p Poly) IsZeroRel(epsilon float64) bool {
return p.deg == 0 && equalRel(p.coef[0], 0, epsilon)
}
// IsMonic returns true p is monic (i.e. leading coefficient 1), else false.
func (p Poly) IsMonic() bool {
return p.coef[p.deg] == 1
}
// IsMonic returns true if largest relative difference between the leading coefficent of p and 1 is
// epsilon, else false.
func (p Poly) IsMonicRel(epsilon float64) bool {
return equalRel(p.coef[p.deg], 1, epsilon)
}
// Monic returns a monic polynomial by dividing each coefficient in p by the lead coefficient.
func (p Poly) Monic() Poly {
return p.MulScalar(1 / p.coef[p.deg])
}
// At returns the value of p evaluated at x.
func (p Poly) At(x float64) float64 {
// Implement Horner's scheme.
out := p.coef[p.deg]
for i := p.deg - 1; i >= 0; i-- {
out = out*x + p.coef[i]
}
return out
}
// Add returns the polynomial sum p + q.
func (p Poly) Add(q Poly) Poly {
var max int
if p.len > q.len {
max = p.len
} else {
max = q.len
}
// Pad the shorter polynomial with zeroes to align.
pe := expand(p.coef, max)
qe := expand(q.coef, max)
sumCoef := make([]float64, max)
// Add like terms.
for i := 0; i < max; i++ {
sumCoef[i] = pe[i] + qe[i]
}
return newPolyNoReverse(sumCoef)
}
// Sub returns the polynomial difference p - q.
func (p Poly) Sub(q Poly) Poly {
var max int
if p.len > q.len {
max = p.len
} else {
max = q.len
}
pe := expand(p.coef, max)
qe := expand(q.coef, max)
difCoef := make([]float64, max)
for i := 0; i < max; i++ {
difCoef[i] = pe[i] - qe[i]
}
return newPolyNoReverse(difCoef)
}
// MulScalar returns the scalar-polynomial product sp.
func (p Poly) MulScalar(s float64) Poly {
// 0 * p = 0.
if s == 0 {
return NewPoly([]float64{0})
}
prodCoef := make([]float64, p.len)
for i, c := range p.coef {
prodCoef[i] = s * c
}
return newPolyNoReverse(prodCoef)
}
// Mul returns the polynomial product pq.
func (p Poly) Mul(q Poly) Poly {
// The product m will have deg(m) = deg(p) + deg(q).
// We add 1 since degree is one less than length of the coefficient slice.
prodCoef := make([]float64, p.deg+q.deg+1)
for i := 0; i < p.len; i++ {
for j := 0; j < q.len; j++ {
prodCoef[i+j] += p.coef[i] * q.coef[j]
}
}
return newPolyNoReverse(prodCoef)
}
// MulFast returns the polynomial product pq.
//
// This method uses an FFT algorithm to perform fast polynomial multiplication in O(n log n) time at
// the price of small floating point errors.
//
// MulFast() should be used when precision is flexible are not rigorous and speed is a requirement.
// If equality must be checked, use EqualWithin() instead of Equal().
func (p Poly) MulFast(q Poly) Poly {
// Algorithm reference:
// https://faculty.sites.iastate.edu/jia/files/inline-files/polymultiply.pdf
if p.deg == 0 {
return q.MulScalar(p.coef[0])
}
if q.deg == 0 {
return p.MulScalar(q.coef[0])
}
// Pad the length of the product coefficient slice to a power of 2 for an efficient FFT.
prodlen := p.deg + q.deg + 1
potlen := nextPOT(prodlen)
// Evaluation to point-value representation.
// Since len(a) and len(b) are powers of 2, the call to
// fft.FFT() implicitly calls the radix2FFT() function,
// which implements the radix-2 DIT Cooley-Tukey algorithm
// (with small floating point error).
a := fft.FFT(toComplex128(expand(p.coef, potlen)))
b := fft.FFT(toComplex128(expand(q.coef, potlen)))
// Pointwise multiplication.
c := make([]complex128, potlen)
for i := 0; i < potlen; i++ {
c[i] = a[i] * b[i]
}
// Interpolation to coefficient slice.
//
// We manually cut the slice off at the expected product length
// since floating point error may cause coefficients that are
// supposed to be zero to be nonzero. This trips up the call to
// removeTrailingZeroes within newPolyNoReverse and we end up
// with a polynomial product with nonexistent nonzero leading
// coefficeints of degree larger than the expected product (p.deg + q.deg).
return newPolyNoReverse(toFloat64(fft.IFFT(c))[:prodlen])
}
// Pow returns the polynomial power p^n.
//
// Panics for negative n.
func (p Poly) Pow(n int) Poly {
if n < 0 {
log.Panic("Pow: negative n.")
}
prod := NewPolyConst(1)
for i := 0; i < n; i++ {
prod = prod.Mul(p)
}
return prod
}
// PowFast returns the polynomial power p^n.
//
// Be sure to read the documentation for MulFast(), as the behaviour is the same.
//
// Panics for negative n.
func (p Poly) PowFast(n int) Poly {
if n < 0 {
log.Panic("PowFast: negative n.")
}
prod := NewPolyConst(1)
for i := 0; i < n; i++ {
prod = prod.MulFast(p)
}
return prod
}
// Div returns m (polynomial quotient) and n (polynomial remainder) such that p/q = m + n/q.
//
// Panics if q = 0.
func (p Poly) Div(q Poly) (Poly, Poly) {
// Dividing by zero.
if q.IsZero() {
log.Panic("Div: division by zero polynomial.")
}
// Dividing zero.
if p.IsZero() {
return NewPolyZero(), NewPolyZero()
}
// Dividing by larger degree.
if p.deg < q.deg {
return NewPolyZero(), p
}
// Implement expanded synthetic division for non-monic divisors.
pRev := reverse(p.coef)
qRev := reverse(q.coef)
quoRemCoef := make([]float64, p.len)
copy(quoRemCoef, pRev)
lead := qRev[0]
sep := p.len - q.len + 1
for i := 0; i < sep; i++ {
quoRemCoef[i] /= lead
if c := quoRemCoef[i]; c != 0 {
for j := 1; j < q.len; j++ {
quoRemCoef[i+j] += -qRev[j] * c
}
}
}
quoCoef := reverse(quoRemCoef[:sep])
remCoef := reverse(quoRemCoef[sep:])
return newPolyNoReverse(quoCoef), newPolyNoReverse(remCoef)
}
// Reciprocal returns the reciprocal polynomial p* of p.
func (p Poly) Reciprocal() Poly {
// Since we reverse the user's coefficient slice in NewPoly(), we just pass
// it back into NewPoly() to reverse the coefficient slice again.
return NewPoly(p.coef)
}
// String returns a string representation of p in decreasing-degree sum form.
func (p Poly) String() string {
var sb strings.Builder
sb.WriteString(fmt.Sprintf("[ %fx^{%d}", p.coef[p.deg], p.deg))
var sgn, strCoef string
for i := 1; i < p.len; i++ {
strCoef = fmt.Sprintf("%f", p.coef[p.deg-i])
if sign(p.coef[p.deg-i]) == -1 {
sgn = " - "
strCoef = strCoef[1:]
} else {
sgn = " + "
}
sb.WriteString(sgn)
sb.WriteString(fmt.Sprintf("%sx^{%d}", strCoef, p.deg-i))
}
sb.WriteString(" ]")
return sb.String()
}
// Stringn returns a string representation of p in decreasing-degree sum form with it's coefficients
// to precision n.
//
// All n < 0 will be treated as n = 0.
func (p Poly) Stringn(n int) string {
var sb strings.Builder
precisionFormat := fmt.Sprintf(".%d", n)
if n < 0 {
precisionFormat = ".0"
}
sb.WriteString(fmt.Sprintf("[ %"+precisionFormat+"fx^{%d}", p.coef[p.deg], p.deg))
var sgn, strCoef string
for i := 1; i < p.len; i++ {
strCoef = fmt.Sprintf("%"+precisionFormat+"f", p.coef[p.deg-i])
if sign(p.coef[p.deg-i]) == -1 {
sgn = " - "
strCoef = strCoef[1:]
} else {
sgn = " + "
}
sb.WriteString(sgn)
sb.WriteString(fmt.Sprintf("%sx^{%d}", strCoef, p.deg-i))
}
sb.WriteString(" ]")
return sb.String()
}
// Printn prints p to standard output with it's coefficients printed to precision n followed by a
// newline.
//
// All n < 0 will be treated as n = 0.
func (p Poly) Printn(n int) {
fmt.Println(p.Stringn(n))
}
// id returns a unqiue identifier for p.
func (p Poly) id() uint32 {
// Generate a unqiue string and hash it.
var sb strings.Builder
for _, c := range p.coef {
sb.WriteString(fmt.Sprintf("%f,", c))
}
h := fnv.New32()
h.Write([]byte(sb.String()))
return h.Sum32()
}