Skip to content

Latest commit

 

History

History
121 lines (94 loc) · 7.28 KB

NEWS.md

File metadata and controls

121 lines (94 loc) · 7.28 KB

development version

mikropml 1.6.1

mikropml 1.6.0

  • New functions:
    • bootstrap_performance() allows you to calculate confidence intervals for the model performance from a single train/test split by bootstrapping the test set (#329, @kelly-sovacool).
    • calc_balanced_precision() allows you to calculate balanced precision and balanced area under the precision-recall curve (#333, @kelly-sovacool).
  • Improved output from find_feature_importance() (#326, @kelly-sovacool).
    • Renamed the column names to feat to represent each feature or group of correlated features.
    • New column lower and upper to report the bounds of the empirical 95% confidence interval from the permutation test. See vignette('parallel') for an example of plotting feature importance with confidence intervals.
  • Minor documentation improvements (#323, #332, @kelly-sovacool).

mikropml 1.5.0

  • New example showing how to plot feature importances in the parallel vignette (#310, @kelly-sovacool).
  • You can now use parRF, a parallel implementation of the rf method, with the same default hyperparameters as rf set automatically (#306, @kelly-sovacool).
  • New functions to calculate and plot ROC and PRC curves: (#321, @kelly-sovacool)
    • calc_model_sensspec() - calculate sensitivity, specificity, and precision for a model.
    • calc_mean_roc() & plot_mean_roc() - calculate & plot specificity and mean sensitivity for multiple models.
    • calc_mean_prc() & plot_mean_prc() - calculate & plot recall and mean precision for multiple models.

mikropml 1.4.0

  • Extra arguments given to run_ml() are now forwarded to caret::train() (#304, @kelly-sovacool).
    • Users can now pass any model-specific arguments (e.g. weights) to caret::train(), allowing greater flexibility.
  • Improved tests (#298, #300, #303 #kelly-sovacool)
  • Minor documentation improvements.

mikropml 1.3.0

  • mikropml now requires R version 4.1.0 or greater due to an update in the randomForest package (#292).
  • New function compare_models() compares the performance of two models with a permutation test (#295, @courtneyarmour).
  • Fixed a bug where cv_times did not affect the reported repeats for cross-validation (#291, @kelly-sovacool).
  • Made minor documentation improvements (#293, @kelly-sovacool)

mikropml 1.2.2

This minor patch fixes a test failure on platforms with no long doubles. The actual package code remains unchanged.

mikropml 1.2.1

  • Allow kfold >= length(groups) (#285, @kelly-sovacool).
    • When using the groups parameter, groups are kept together in cross-validation partitions when kfold <= the number of groups in the training set. Previously, an error was thrown if this condition was not met. Now, if there are not enough groups in the training set for groups to be kept together during CV, groups are allowed to be split up across CV partitions.
  • Report p-values for permutation feature importance (#288, @kelly-sovacool).

mikropml 1.2.0

  • New parameter cross_val added to run_ml() allows users to define their own custom cross-validation scheme (#278, @kelly-sovacool).
    • Also added a new parameter calculate_performance, which controls whether performance metrics are calculated (default: TRUE). Users may wish to skip performance calculations when training models with no cross-validation.
  • New parameter group_partitions added to run_ml() allows users to control which groups should go to which partition of the train/test split (#281, @kelly-sovacool).
  • Modified the training_frac parameter in run_ml() (#281, @kelly-sovacool).
    • By default, training_frac is a fraction between 0 and 1 that specifies how much of the dataset should be used in the training fraction of the train/test split.
    • Users can instead give training_frac a vector of indices that correspond to which rows of the dataset should go in the training fraction of the train/test split. This gives users direct control over exactly which observations are in the training fraction if desired.

mikropml 1.1.1

  • Fixed bugs related to grouping correlated features (#276, @kelly-sovacool).
    • Also, group_correlated_features() is now a user-facing function.

mikropml 1.1.0

  • New correlation method option for feature importance (#267, @courtneyarmour).
    • The default is still "spearman", and now you can use other methods supported by stats::cor with the corr_method parameter: get_feature_importance(corr_method = "pearson")
  • There are now video tutorials covering mikropml and other skills related to machine learning, created by @pschloss (#270).
  • Fixed a bug where preprocess_data() converted the outcome column to a character vector (#273, @kelly-sovacool, @ecmaggioncalda).

mikropml 1.0.0

  • mikropml now has a logo created by @NLesniak!
  • Made documentation improvements (#238, #231 @kelly-sovacool; #256 @BTopcuoglu).
  • New option in preprocess_data(): prefilter_threshold (#240, @kelly-sovacool, @courtneyarmour).
    • Remove any features that appear in N=prefilter_threshold or fewer rows in the data.
    • Created function remove_singleton_columns() called by preprocess_data() to carry this out.
  • New option in get_feature_importance(): groups (#246, @kelly-sovacool).
    • Provide custom groups of features to permute together during permutation importance.
    • groups is NULL by default; in this case, correlated features above corr_thresh are grouped together.
  • preprocess_data() now replaces spaces in the outcome column with underscores (#247, @kelly-sovacool, @JonnyTran).
  • Clarify in the intro vignette that we do not support multi-label outcomes. (#254, @zenalapp)
  • Optional progress bar for preprocess_data() and get_feature_importance() using the progressr package (#257, @kelly-sovacool, @JonnyTran, @FedericoComoglio).
  • The mikropml paper is soon to be published in JOSS!

mikropml 0.0.2

  • Fixed a test failure on Solaris.
  • Fixed multiple test failures with R 3.6.2 due to stringsAsFactors behavior.
  • Made minor documentation improvements.
  • Moved rpart from Suggests to Imports for consistency with other packages used during model training.

mikropml 0.0.1

This is the first release version of mikropml! 🎉

  • Added a NEWS.md file to track changes to the package.
  • Major new functions:
    • run_ml()
    • preprocess_data()
    • plot_model_performance()
    • plot_hp_performance()
  • Support for ML methods in run_ml():
    • glmnet: logistic and linear regression
    • rf: random forest
    • rpart2: decision trees
    • svmRadial: support vector machines
    • xgbTree: gradient-boosted trees
  • New vignettes: