Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

data set #14

Open
Hiwyl opened this issue Sep 6, 2020 · 4 comments
Open

data set #14

Hiwyl opened this issue Sep 6, 2020 · 4 comments

Comments

@Hiwyl
Copy link

Hiwyl commented Sep 6, 2020

Do I have to use segmentation data sets?but i just have box

@dengtianbi
Copy link

I meet the same problem !
Did you solve it ?

@Hiwyl
Copy link
Author

Hiwyl commented Sep 9, 2020

@Scalsol TKS

@Scalsol
Copy link
Owner

Scalsol commented Sep 9, 2020

Box annotation is enough :)

@Hiwyl
Copy link
Author

Hiwyl commented Sep 9, 2020

@Scalsol TKS help me
base = './reppoints_v2_r50_fpn_giou_1x_coco.py'

learning policy

lr_config = dict(step=[16, 22])
total_epochs = 24

multi-scale training

img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Resize',
# img_scale=[(1333, 480), (1333, 960)],
img_scale=[(1296,972)],
multiscale_mode='range',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='LoadRPDV2Annotations'),
dict(type='RPDV2FormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_sem_map', 'gt_sem_weights']),
]
data = dict(train=dict(pipeline=train_pipeline))

this dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_sem_map', 'gt_sem_weights']) just use box?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants