forked from QData/C-Tran
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_data.py
190 lines (166 loc) · 8.23 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import torch
from skimage import io, transform
import numpy as np
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from pdb import set_trace as stop
import os, random
from dataloaders.voc2007_20 import Voc07Dataset
from dataloaders.vg500_dataset import VGDataset
from dataloaders.coco80_dataset import Coco80Dataset
from dataloaders.news500_dataset import NewsDataset
from dataloaders.coco1000_dataset import Coco1000Dataset
from dataloaders.cub312_dataset import CUBDataset
import warnings
warnings.filterwarnings("ignore")
def get_data(args):
dataset = args.dataset
data_root=args.dataroot
batch_size=args.batch_size
rescale=args.scale_size
random_crop=args.crop_size
attr_group_dict=args.attr_group_dict
workers=args.workers
n_groups=args.n_groups
normTransform = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
scale_size = rescale
crop_size = random_crop
if args.test_batch_size == -1:
args.test_batch_size = batch_size
trainTransform = transforms.Compose([transforms.Resize((scale_size, scale_size)),
transforms.RandomChoice([
transforms.RandomCrop(640),
transforms.RandomCrop(576),
transforms.RandomCrop(512),
transforms.RandomCrop(384),
transforms.RandomCrop(320)
]),
transforms.Resize((crop_size, crop_size)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normTransform])
testTransform = transforms.Compose([transforms.Resize((scale_size, scale_size)),
transforms.CenterCrop(crop_size),
transforms.ToTensor(),
normTransform])
test_dataset = None
test_loader = None
drop_last = False
if dataset == 'coco':
coco_root = os.path.join(data_root,'coco')
ann_dir = os.path.join(coco_root,'annotations_pytorch')
train_img_root = os.path.join(coco_root,'train2014')
test_img_root = os.path.join(coco_root,'val2014')
train_data_name = 'train.data'
val_data_name = 'val_test.data'
train_dataset = Coco80Dataset(
split='train',
num_labels=args.num_labels,
data_file=os.path.join(coco_root,train_data_name),
img_root=train_img_root,
annotation_dir=ann_dir,
max_samples=args.max_samples,
transform=trainTransform,
known_labels=args.train_known_labels,
testing=False)
valid_dataset = Coco80Dataset(split='val',
num_labels=args.num_labels,
data_file=os.path.join(coco_root,val_data_name),
img_root=test_img_root,
annotation_dir=ann_dir,
max_samples=args.max_samples,
transform=testTransform,
known_labels=args.test_known_labels,
testing=True)
elif dataset == 'coco1000':
ann_dir = os.path.join(data_root,'coco','annotations_pytorch')
data_dir = os.path.join(data_root,'coco')
train_img_root = os.path.join(data_dir,'train2014')
test_img_root = os.path.join(data_dir,'val2014')
train_dataset = Coco1000Dataset(ann_dir, data_dir, split = 'train', transform = trainTransform,known_labels=args.train_known_labels,testing=False)
valid_dataset = Coco1000Dataset(ann_dir, data_dir, split = 'val', transform = testTransform,known_labels=args.test_known_labels,testing=True)
elif dataset == 'vg':
vg_root = os.path.join(data_root,'VG')
train_dir=os.path.join(vg_root,'VG_100K')
train_list=os.path.join(vg_root,'train_list_500.txt')
test_dir=os.path.join(vg_root,'VG_100K')
test_list=os.path.join(vg_root,'test_list_500.txt')
train_label=os.path.join(vg_root,'vg_category_500_labels_index.json')
test_label=os.path.join(vg_root,'vg_category_500_labels_index.json')
train_dataset = VGDataset(
train_dir,
train_list,
trainTransform,
train_label,
known_labels=0,
testing=False)
valid_dataset = VGDataset(
test_dir,
test_list,
testTransform,
test_label,
known_labels=args.test_known_labels,
testing=True)
elif dataset == 'news':
drop_last=True
ann_dir = '/bigtemp/jjl5sw/PartialMLC/data/bbc_data/'
train_dataset = NewsDataset(ann_dir, split = 'train', transform = trainTransform,known_labels=0,testing=False)
valid_dataset = NewsDataset(ann_dir, split = 'test', transform = testTransform,known_labels=args.test_known_labels,testing=True)
elif dataset=='voc':
voc_root = os.path.join(data_root,'voc/VOCdevkit/VOC2007/')
img_dir = os.path.join(voc_root,'JPEGImages')
anno_dir = os.path.join(voc_root,'Annotations')
train_anno_path = os.path.join(voc_root,'ImageSets/Main/trainval.txt')
test_anno_path = os.path.join(voc_root,'ImageSets/Main/test.txt')
train_dataset = Voc07Dataset(
img_dir=img_dir,
anno_path=train_anno_path,
image_transform=trainTransform,
labels_path=anno_dir,
known_labels=args.train_known_labels,
testing=False,
use_difficult=False)
valid_dataset = Voc07Dataset(
img_dir=img_dir,
anno_path=test_anno_path,
image_transform=testTransform,
labels_path=anno_dir,
known_labels=args.test_known_labels,
testing=True)
elif dataset == 'cub':
drop_last=True
resol=299
resized_resol = int(resol * 256/224)
trainTransform = transforms.Compose([
#transforms.Resize((resized_resol, resized_resol)),
#transforms.RandomSizedCrop(resol),
transforms.ColorJitter(brightness=32/255, saturation=(0.5, 1.5)),
transforms.RandomResizedCrop(resol),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(), #implicitly divides by 255
transforms.Normalize(mean = [0.5, 0.5, 0.5], std = [2, 2, 2])
])
testTransform = transforms.Compose([
#transforms.Resize((resized_resol, resized_resol)),
transforms.CenterCrop(resol),
transforms.ToTensor(), #implicitly divides by 255
transforms.Normalize(mean = [0.5, 0.5, 0.5], std = [2, 2, 2])
])
cub_root = os.path.join(data_root,'CUB_200_2011')
image_dir = os.path.join(cub_root,'images')
train_list = os.path.join(cub_root,'class_attr_data_10','train_valid.pkl')
valid_list = os.path.join(cub_root,'class_attr_data_10','train_valid.pkl')
test_list = os.path.join(cub_root,'class_attr_data_10','test.pkl')
train_dataset = CUBDataset(image_dir, train_list, trainTransform,known_labels=args.train_known_labels,attr_group_dict=attr_group_dict,testing=False,n_groups=n_groups)
valid_dataset = CUBDataset(image_dir, valid_list, testTransform,known_labels=args.test_known_labels,attr_group_dict=attr_group_dict,testing=True,n_groups=n_groups)
test_dataset = CUBDataset(image_dir, test_list, testTransform,known_labels=args.test_known_labels,attr_group_dict=attr_group_dict,testing=True,n_groups=n_groups)
else:
print('no dataset avail')
exit(0)
if train_dataset is not None:
train_loader = DataLoader(train_dataset, batch_size=batch_size,shuffle=True, num_workers=workers,drop_last=drop_last)
if valid_dataset is not None:
valid_loader = DataLoader(valid_dataset, batch_size=args.test_batch_size,shuffle=False, num_workers=workers)
if test_dataset is not None:
test_loader = DataLoader(test_dataset, batch_size=args.test_batch_size,shuffle=False, num_workers=workers)
return train_loader,valid_loader,test_loader