forked from edongdongchen/EI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_test_ct.py
70 lines (55 loc) · 2.57 KB
/
demo_test_ct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import torch
from models.unet import UNet
from dataset.ctdb import CTData
from physics.ct import CT
from utils.metric import cal_psnr
import argparse
import matplotlib.pyplot as plt
parser = argparse.ArgumentParser(description='Inpainting test.')
parser.add_argument('--gpu', default=0, type=int, help='GPU id to use.')
parser.add_argument('--sample-to-show', default=[9], nargs='*', type=int,
help='the test sample id for visualization'
'default [9]')
parser.add_argument('--ckp', default='./ckp/ct/ckp_ei_final.pth.tar', type=str, metavar='PATH',
help='path to checkpoint of a trained model')
parser.add_argument('--model-name', default='EI', type=str, help="name of the trained model (dafault: 'EI')")
def main():
args = parser.parse_args()
device = f'cuda:{args.gpu}'
unet = UNet(in_channels=1, out_channels=1, compact=4, residual=True,
circular_padding=True, cat=True).to(device)
forw = CT(img_width=128, radon_view=50, circle=False, device=device)
dataloader = torch.utils.data.DataLoader(dataset=CTData(mode='test'),batch_size=1, shuffle=False)
def test(net, ckp, fbp, adv=False):
checkpoint = torch.load(ckp, map_location=device)
net.load_state_dict(checkpoint['state_dict_G' if adv else 'state_dict'])
net.to(device).eval()
return net(fbp)
for i, x in enumerate(dataloader):
if i in args.sample_to_show:
if len(x.shape) == 3:
x = x.unsqueeze(1)
x = x.type(torch.float).to(device)
y = forw.A(x)
fbp = forw.A_dagger(y)
x_hat = test(unet, args.ckp_net, fbp)
plt.subplot(1,4,1)
plt.imshow(y[0].detach().permute(1, 2, 0).cpu().numpy())
plt.title('y')
plt.subplot(1,4,2)
plt.imshow(fbp[0].detach().permute(1, 2, 0).cpu().numpy())
plt.title('FBP ({:.2f})'.format(cal_psnr(x, fbp)))
plt.subplot(1,4,3)
plt.imshow(x_hat[0].detach().permute(1, 2, 0).cpu().numpy())
plt.title('{} ({:.2f})'.format(args.model_name, cal_psnr(x, x_hat)))
plt.subplot(1,4,4)
plt.imshow(x[0].detach().permute(1, 2, 0).cpu().numpy())
plt.title('x (GT)')
ax = plt.gca()
ax.set_xticks([]), ax.set_yticks([])
plt.subplots_adjust(left=0.1, bottom=0.1, top=0.9, right=0.9, hspace=0.02, wspace=0.02)
plt.show()
else:
continue
if __name__=='__main__':
main()