forked from karfly/learnable-triangulation-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 11
/
train.py
774 lines (600 loc) · 34.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
import os
import shutil
import argparse
import time
import json
from datetime import datetime
from collections import defaultdict
from itertools import islice
import pickle
import copy
import numpy as np
import cv2
import torch
from torch import nn
from torch import autograd
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.nn.parallel import DistributedDataParallel
from tensorboardX import SummaryWriter
from mvn.models.triangulation import RANSACTriangulationNet, AlgebraicTriangulationNet, VolumetricTriangulationNet
from mvn.models.loss import KeypointsMSELoss, KeypointsMSESmoothLoss, KeypointsMAELoss, KeypointsL2Loss, VolumetricCELoss
from mvn.utils import img, multiview, op, vis, misc, cfg
from mvn.datasets import human36m, cmupanoptic
from mvn.datasets import utils as dataset_utils
# need this to overcome overflow error with pickling
import pickle4reducer
DEBUG = False
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, required=True, help="Path, where config file is stored")
parser.add_argument('--eval', action='store_true', help="If set, then only evaluation will be done")
parser.add_argument('--eval_dataset', type=str, default='val', help="Dataset split on which evaluate. Can be 'train' and 'val'")
parser.add_argument("--local_rank", type=int, help="Local rank of the process on the node")
parser.add_argument("--seed", type=int, default=42, help="Random seed for reproducibility")
parser.add_argument("--logdir", type=str, default="./logs", help="Path, where logs will be stored")
args = parser.parse_args()
return args
def setup_human36m_dataloaders(config, is_train, distributed_train):
train_dataloader = None
if is_train:
# train
train_dataset = human36m.Human36MMultiViewDataset(
h36m_root=config.dataset.train.h36m_root,
pred_results_path=config.dataset.train.pred_results_path if hasattr(config.dataset.train, "pred_results_path") else None,
train=True,
test=False,
image_shape=config.image_shape if hasattr(config, "image_shape") else (256, 256),
labels_path=config.dataset.train.labels_path,
with_damaged_actions=config.dataset.train.with_damaged_actions,
scale_bbox=config.dataset.train.scale_bbox,
kind=config.kind,
undistort_images=config.dataset.train.undistort_images,
ignore_cameras=config.dataset.train.ignore_cameras if hasattr(config.dataset.train, "ignore_cameras") else [],
crop=config.dataset.train.crop if hasattr(config.dataset.train, "crop") else True,
)
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) if distributed_train else None
train_dataloader = DataLoader(
train_dataset,
batch_size=config.opt.batch_size,
shuffle=config.dataset.train.shuffle and (train_sampler is None), # debatable
sampler=train_sampler,
collate_fn=dataset_utils.make_collate_fn(randomize_n_views=config.dataset.train.randomize_n_views,
min_n_views=config.dataset.train.min_n_views,
max_n_views=config.dataset.train.max_n_views),
num_workers=config.dataset.train.num_workers,
worker_init_fn=dataset_utils.worker_init_fn,
pin_memory=True,
drop_last=False
)
# val
val_dataset = human36m.Human36MMultiViewDataset(
h36m_root=config.dataset.val.h36m_root,
pred_results_path=config.dataset.val.pred_results_path if hasattr(config.dataset.val, "pred_results_path") else None,
train=False,
test=True,
image_shape=config.image_shape if hasattr(config, "image_shape") else (256, 256),
labels_path=config.dataset.val.labels_path,
with_damaged_actions=config.dataset.val.with_damaged_actions,
retain_every_n_frames_in_test=config.dataset.val.retain_every_n_frames_in_test,
scale_bbox=config.dataset.val.scale_bbox,
kind=config.kind,
undistort_images=config.dataset.val.undistort_images,
ignore_cameras=config.dataset.val.ignore_cameras if hasattr(config.dataset.val, "ignore_cameras") else [],
crop=config.dataset.val.crop if hasattr(config.dataset.val, "crop") else True,
)
val_dataloader = DataLoader(
val_dataset,
batch_size=config.opt.val_batch_size if hasattr(config.opt, "val_batch_size") else config.opt.batch_size,
shuffle=config.dataset.val.shuffle,
collate_fn=dataset_utils.make_collate_fn(randomize_n_views=config.dataset.val.randomize_n_views,
min_n_views=config.dataset.val.min_n_views,
max_n_views=config.dataset.val.max_n_views),
num_workers=config.dataset.val.num_workers,
worker_init_fn=dataset_utils.worker_init_fn,
pin_memory=True,
drop_last=False
)
return train_dataloader, val_dataloader, train_sampler
def setup_cmu_dataloaders(config, is_train, distributed_train):
train_dataloader = None
if is_train:
# train
train_dataset = cmupanoptic.CMUPanopticDataset(
cmu_root=config.dataset.train.cmu_root,
pred_results_path=config.dataset.train.pred_results_path if hasattr(config.dataset.train, "pred_results_path") else None,
train=True,
test=False,
image_shape=config.image_shape if hasattr(config, "image_shape") else (256, 256),
labels_path=config.dataset.train.labels_path,
scale_bbox=config.dataset.train.scale_bbox,
square_bbox=config.dataset.train.square_bbox if hasattr(config.dataset.train, "square_bbox") else True,
kind=config.kind,
transfer_cmu_to_human36m=config.model.transfer_cmu_to_human36m if hasattr(config.model, "transfer_cmu_to_human36m") else False,
choose_cameras=config.dataset.train.choose_cameras if hasattr(config.dataset.train, "choose_cameras") else [],
ignore_cameras=config.dataset.train.ignore_cameras if hasattr(config.dataset.train, "ignore_cameras") else [],
crop=config.dataset.train.crop if hasattr(config.dataset.train, "crop") else True,
frames_split_file=config.opt.frames_split_file if hasattr(config.opt, "frames_split_file") else None
)
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) if distributed_train else None
train_dataloader = DataLoader(
train_dataset,
batch_size=config.opt.batch_size,
shuffle=config.dataset.train.shuffle and (train_sampler is None), # debatable
sampler=train_sampler,
collate_fn=dataset_utils.make_collate_fn(randomize_n_views=config.dataset.train.randomize_n_views,
min_n_views=config.dataset.train.min_n_views,
max_n_views=config.dataset.train.max_n_views),
num_workers=config.dataset.train.num_workers,
worker_init_fn=dataset_utils.worker_init_fn,
pin_memory=True,
drop_last=False
)
# val
val_dataset = cmupanoptic.CMUPanopticDataset(
cmu_root=config.dataset.val.cmu_root,
pred_results_path=config.dataset.val.pred_results_path if hasattr(
config.dataset.val, "pred_results_path") else None,
train=False,
test=True,
image_shape=config.image_shape if hasattr(config, "image_shape") else (256, 256),
labels_path=config.dataset.val.labels_path,
retain_every_n_frames_in_test=config.dataset.val.retain_every_n_frames_in_test,
scale_bbox=config.dataset.val.scale_bbox,
square_bbox=config.dataset.val.square_bbox if hasattr(config.dataset.val, "square_bbox") else True,
kind=config.kind,
choose_cameras=config.dataset.val.choose_cameras if hasattr(config.dataset.val, "choose_cameras") else [],
ignore_cameras=config.dataset.val.ignore_cameras if hasattr(config.dataset.val, "ignore_cameras") else [],
crop=config.dataset.val.crop if hasattr(config.dataset.val, "crop") else True,
frames_split_file=config.opt.frames_split_file if hasattr(config.opt, "frames_split_file") else None
)
val_dataloader = DataLoader(
val_dataset,
batch_size=config.opt.val_batch_size if hasattr(config.opt, "val_batch_size") else config.opt.batch_size,
shuffle=config.dataset.val.shuffle,
collate_fn=dataset_utils.make_collate_fn(randomize_n_views=config.dataset.val.randomize_n_views,
min_n_views=config.dataset.val.min_n_views,
max_n_views=config.dataset.val.max_n_views),
num_workers=config.dataset.val.num_workers,
worker_init_fn=dataset_utils.worker_init_fn,
pin_memory=True,
drop_last=False
)
return train_dataloader, val_dataloader, train_sampler
def setup_dataloaders(config, is_train=True, distributed_train=False):
if config.dataset.kind == 'human36m':
train_dataloader, val_dataloader, train_sampler = setup_human36m_dataloaders(config, is_train, distributed_train)
elif config.dataset.kind in ['cmu', 'cmupanoptic']:
train_dataloader, val_dataloader, train_sampler = setup_cmu_dataloaders(config, is_train, distributed_train)
elif config.dataset.kind == 'example':
raise NotImplementedError("Please follow instructions at TESTING_ON_GENERAL_DATASET.md to implement your dataset")
# train_dataloader, val_dataloader, train_sampler = setup_example_dataloaders(config, is_train, distributed_train)
else:
raise NotImplementedError("Unknown dataset: {}".format(config.dataset.kind))
return train_dataloader, val_dataloader, train_sampler
def setup_experiment(config, model_name, is_train=True):
prefix = "" if is_train else "eval_"
if config.title:
experiment_title = config.title + "_" + model_name
else:
experiment_title = model_name
experiment_title = prefix + experiment_title
experiment_name = '{}@{}'.format(experiment_title, datetime.now().strftime("%d.%m.%Y-%H:%M:%S"))
print("Experiment name: {}".format(experiment_name))
experiment_dir = os.path.join(args.logdir, experiment_name)
os.makedirs(experiment_dir, exist_ok=True)
checkpoints_dir = os.path.join(experiment_dir, "checkpoints")
os.makedirs(checkpoints_dir, exist_ok=True)
shutil.copy(args.config, os.path.join(experiment_dir, "config.yaml"))
# tensorboard
writer = SummaryWriter(os.path.join(experiment_dir, "tb"))
# dump config to tensorboard
writer.add_text(misc.config_to_str(config), "config", 0)
return experiment_dir, writer
def one_epoch(model, criterion, opt, config, dataloader, device, epoch, n_iters_total=0, is_train=True, caption='', master=False, experiment_dir=None, writer=None):
name = "train" if is_train else "val"
model_type = config.model.name
if is_train:
model.train()
else:
model.eval()
metric_dict = defaultdict(list)
results = defaultdict(list)
save_extra_data = config.save_extra_data if hasattr(config, "save_extra_data") else False
if save_extra_data:
extra_data = defaultdict(list)
transfer_cmu_h36m = config.model.transfer_cmu_to_human36m if hasattr(config.model, "transfer_cmu_to_human36m") else False
print("Transfer CMU to H36M: ", transfer_cmu_h36m)
print("Using GT Pelvis position: ", config.model.use_gt_pelvis if hasattr(config.model, "use_gt_pelvis") else False)
print("Using cameras: ", dataloader.dataset.choose_cameras if hasattr(dataloader.dataset, "choose_cameras") else False)
print("Debug Mode: ", DEBUG)
print("Training: ", is_train)
train_eval_mode = "Train" if is_train else "Eval"
# used to turn on/off gradients
grad_context = torch.autograd.enable_grad if is_train else torch.no_grad
with grad_context():
end = time.time()
iterator = enumerate(dataloader)
if is_train and config.opt.n_iters_per_epoch is not None:
iterator = islice(iterator, config.opt.n_iters_per_epoch)
if not is_train and config.opt.n_iters_per_epoch_val is not None:
iterator = islice(iterator, config.opt.n_iters_per_epoch_val)
'''
Data breakdown:
- For each of the (max) 31 cameras in CMU dataset:
- OpenCV Image: Numpy array [Note: likely cropped to smaller shape]
- BBOX Detection for the image: (left, top, right, bottom) tuple
- Camera: `Camera` object from `multiview.py`
- Index: int
- Keypoints (gt): NP Array, (17, 4)
- Keypoints (pred): NP Array, (17, 4) [Note: may not be there]
'''
ignore_batch = [ ]
for iter_i, batch in iterator:
if not is_train and iter_i in ignore_batch:
continue
if True: # with autograd.detect_anomaly():
# measure data loading time
data_time = time.time() - end
if batch is None:
print(
f"[{train_eval_mode}, {epoch}] Found None batch: {iter_i}")
continue
if DEBUG:
print(f"{train_eval_mode} batch {iter_i}...")
print(f"[{train_eval_mode}, {epoch}, {iter_i}] Preparing batch... ", end="")
images_batch, keypoints_3d_gt, keypoints_3d_validity_gt, proj_matricies_batch = dataset_utils.prepare_batch(batch, device, config)
if DEBUG:
print("Prepared!")
if DEBUG:
print(f"[{train_eval_mode}, {epoch}, {iter_i}] Running {model_type} model... ", end="")
keypoints_2d_pred, cuboids_pred, base_points_pred = None, None, None
if model_type == "alg" or model_type == "ransac":
keypoints_3d_pred, keypoints_2d_pred, heatmaps_pred, confidences_pred = model(images_batch, proj_matricies_batch, batch)
elif model_type == "vol":
keypoints_3d_pred, heatmaps_pred, volumes_pred, confidences_pred, cuboids_pred, coord_volumes_pred, base_points_pred = model(images_batch, proj_matricies_batch, batch)
else:
raise NotImplementedError(f"Unknown model type {model_type}")
if DEBUG:
print("Done!")
# batch shape[2] is likely to be the number of channels
# n_views is also the number of cameras being used in this batch
batch_size, n_views, image_shape = images_batch.shape[0], images_batch.shape[1], tuple(images_batch.shape[3:])
n_joints = keypoints_3d_pred.shape[1]
keypoints_3d_binary_validity_gt = (keypoints_3d_validity_gt > 0.0).type(torch.float32)
# Due to differences in model used, it may be possible that the gt and pred keypoints have different scales
# Set this difference in scaling in the config.yaml file
scale_keypoints_3d = config.opt.scale_keypoints_3d if hasattr(config.opt, "scale_keypoints_3d") else 1.0
scale_keypoints_3d_gt = config.opt.scale_keypoints_3d_gt if hasattr(config.opt, "scale_keypoints_3d_gt") else scale_keypoints_3d
# force ground truth keypoints to fit config kind
keypoints_gt_original = keypoints_3d_gt.clone()
if keypoints_3d_gt.shape[1] != n_joints : #and transfer_cmu_h36m:
print(
f"[Warning] Possibly due to different pretrained model type, ground truth has {keypoints_3d_gt.shape[1]} keypoints while predicted has {n_joints} keypoints"
)
keypoints_3d_gt = keypoints_3d_gt[:, :n_joints, :]
keypoints_3d_binary_validity_gt = keypoints_3d_binary_validity_gt[
:, :n_joints, :]
# 1-view case
# TODO: Totally remove for CMU dataset (which doesnt have pelvis-offset errors)?
if n_views == 1:
print(f"[{train_eval_mode}, {epoch}, {iter_i}] {config.kind} 1-view case: batch {iter_i}, images {images_batch.shape}")
if config.kind == "human36m":
base_joint = 6
elif config.kind in ["coco", "cmu", "cmupanoptic"]:
base_joint = 11
keypoints_3d_gt_transformed = keypoints_3d_gt.clone()
keypoints_3d_gt_transformed[:, torch.arange(n_joints) != base_joint] -= keypoints_3d_gt_transformed[:, base_joint:base_joint + 1]
keypoints_3d_gt = keypoints_3d_gt_transformed
keypoints_3d_pred_transformed = keypoints_3d_pred.clone()
keypoints_3d_pred_transformed[:, torch.arange(n_joints) != base_joint] -= keypoints_3d_pred_transformed[:, base_joint:base_joint + 1]
keypoints_3d_pred = keypoints_3d_pred_transformed
# calculate loss
if DEBUG:
print(f"[{train_eval_mode}, {epoch}, {iter_i}] Calculating loss... ", end="")
total_loss = 0.0
loss = criterion(
keypoints_3d_pred * scale_keypoints_3d,
keypoints_3d_gt * scale_keypoints_3d,
keypoints_3d_binary_validity_gt
)
total_loss += loss
metric_dict[f'{config.opt.criterion}'].append(loss.item())
# volumetric ce loss
use_volumetric_ce_loss = config.opt.use_volumetric_ce_loss if hasattr(config.opt, "use_volumetric_ce_loss") else False
if use_volumetric_ce_loss:
volumetric_ce_criterion = VolumetricCELoss()
loss = volumetric_ce_criterion(coord_volumes_pred, volumes_pred, keypoints_3d_gt, keypoints_3d_binary_validity_gt)
metric_dict['volumetric_ce_loss'].append(loss.item())
weight = config.opt.volumetric_ce_loss_weight if hasattr(config.opt, "volumetric_ce_loss_weight") else 1.0
total_loss += weight * loss
metric_dict['total_loss'].append(total_loss.item())
if DEBUG:
print("Done!")
if is_train:
if DEBUG:
print(f"[{train_eval_mode}, {epoch}, {iter_i}] Backpropragating... ", end="")
opt.zero_grad()
total_loss.backward()
if hasattr(config.opt, "grad_clip"):
torch.nn.utils.clip_grad_norm_(model.parameters(), config.opt.grad_clip / config.opt.lr)
metric_dict['grad_norm_times_lr'].append(config.opt.lr * misc.calc_gradient_norm(filter(lambda x: x[1].requires_grad, model.named_parameters())))
opt.step()
if DEBUG:
print("Done!")
# calculate metrics
if DEBUG:
print(f"[{train_eval_mode}, {epoch}, {iter_i}] Calculating metrics... ", end="")
l2 = KeypointsL2Loss()(
keypoints_3d_pred * scale_keypoints_3d,
keypoints_3d_gt * scale_keypoints_3d,
keypoints_3d_binary_validity_gt
)
metric_dict['l2'].append(l2.item())
# base point l2
if base_points_pred is not None:
if DEBUG:
print(f"\n\tCalculating base point metric...", end="")
base_point_l2_list = []
for batch_i in range(batch_size):
base_point_pred = base_points_pred[batch_i]
if config.model.kind == "coco":
base_point_gt = (keypoints_3d_gt[batch_i, 11, :3] + keypoints_3d_gt[batch_i, 12, :3]) / 2
elif config.model.kind == "mpii":
base_point_gt = keypoints_3d_gt[batch_i, 6, :3]
elif config.model.kind == "cmu":
base_point_gt = keypoints_3d_gt[batch_i, 2, :3]
base_point_l2_list.append(torch.sqrt(torch.sum((base_point_pred * scale_keypoints_3d - base_point_gt * scale_keypoints_3d) ** 2)).item())
base_point_l2 = 0.0 if len(base_point_l2_list) == 0 else np.mean(base_point_l2_list)
metric_dict['base_point_l2'].append(base_point_l2)
if DEBUG:
print("Done!")
if DEBUG:
print("Done!")
# save answers for evalulation
if not is_train:
results['keypoints_3d'].append(keypoints_3d_pred.detach().cpu().numpy())
results['indexes'].append(batch['indexes'])
if save_extra_data:
extra_data['images'].append(batch['images'])
extra_data['detections'].append(batch['detections'])
extra_data['keypoints_3d_gt'].append(batch['keypoints_3d'])
extra_data['cameras'].append(batch['cameras'])
# plot visualization
# NOTE: transfer_cmu_h36m has a visualisation error, and connectivity dict needs to be h36m
if master:
if n_iters_total % config.vis_freq == 0:# or total_l2.item() > 500.0:
vis_kind = config.kind if hasattr(config, "kind") else "coco"
pred_kind = config.pred_kind if hasattr(config, "pred_kind") else None
if transfer_cmu_h36m and pred_kind is None:
pred_kind = "human36m"
# NOTE: Because of transfering, using original gt instead of truncated ones
for batch_i in range(min(batch_size, config.vis_n_elements)):
keypoints_vis = vis.visualize_batch(
images_batch, heatmaps_pred, keypoints_2d_pred, proj_matricies_batch,
keypoints_gt_original, keypoints_3d_pred,
kind=vis_kind,
cuboids_batch=cuboids_pred,
confidences_batch=confidences_pred,
batch_index=batch_i, size=5,
max_n_cols=10,
pred_kind=pred_kind
)
writer.add_image(f"{name}/keypoints_vis/{batch_i}", keypoints_vis.transpose(2, 0, 1), global_step=n_iters_total)
heatmaps_vis = vis.visualize_heatmaps(
images_batch, heatmaps_pred,
kind=pred_kind,
batch_index=batch_i, size=5,
max_n_rows=10, max_n_cols=10
)
writer.add_image(f"{name}/heatmaps/{batch_i}", heatmaps_vis.transpose(2, 0, 1), global_step=n_iters_total)
if model_type == "vol":
volumes_vis = vis.visualize_volumes(
images_batch, volumes_pred, proj_matricies_batch,
kind=pred_kind,
cuboids_batch=cuboids_pred,
batch_index=batch_i, size=5,
max_n_rows=1, max_n_cols=16
)
writer.add_image(f"{name}/volumes/{batch_i}", volumes_vis.transpose(2, 0, 1), global_step=n_iters_total)
# dump weights to tensoboard
if n_iters_total % config.vis_freq == 0:
for p_name, p in model.named_parameters():
try:
writer.add_histogram(p_name, p.clone().cpu().data.numpy(), n_iters_total)
except ValueError as e:
print(e)
print(p_name, p)
exit()
# dump to tensorboard per-iter loss/metric stats
if is_train:
for title, value in metric_dict.items():
writer.add_scalar(f"{name}/{title}", value[-1], n_iters_total)
# measure elapsed time
batch_time = time.time() - end
end = time.time()
# dump to tensorboard per-iter time stats
writer.add_scalar(f"{name}/batch_time", batch_time, n_iters_total)
writer.add_scalar(f"{name}/data_time", data_time, n_iters_total)
# dump to tensorboard per-iter stats about sizes
writer.add_scalar(f"{name}/batch_size", batch_size, n_iters_total)
writer.add_scalar(f"{name}/n_views", n_views, n_iters_total)
n_iters_total += 1
if DEBUG:
print(f"Training of epoch {epoch}, batch {iter_i} complete!")
# calculate evaluation metrics
if master:
if not is_train:
if DEBUG:
print("Calculating evaluation metrics... ", end="")
results['keypoints_3d'] = np.concatenate(
results['keypoints_3d'], axis=0)
results['indexes'] = np.concatenate(results['indexes'])
try:
scalar_metric, full_metric = dataloader.dataset.evaluate(results['keypoints_3d'])
except Exception as e:
print("Failed to evaluate. Reason: ", e)
scalar_metric, full_metric = 0.0, {}
metric_dict['dataset_metric'].append(scalar_metric)
checkpoint_dir = os.path.join(experiment_dir, "checkpoints", "{:04}".format(epoch))
os.makedirs(checkpoint_dir, exist_ok=True)
if DEBUG:
print("Calculated!")
# dump results
with open(os.path.join(checkpoint_dir, "results.pkl"), 'wb') as fout:
if DEBUG:
print(f"Dumping results to {checkpoint_dir}/results.pkl... ", end="")
pickle.dump(results, fout, protocol=4)
if DEBUG:
print("Dumped!")
# dump extra data as pkl file if need to reconstruct anything
if save_extra_data:
with open(os.path.join(checkpoint_dir, "extra_data.pkl"), 'wb') as fout:
if DEBUG:
print(f"Dumping extra data to {checkpoint_dir}/extra_data.pkl... ", end="")
pickle.dump(extra_data, fout, protocol=4)
if DEBUG:
print("Dumped!")
# dump full metric
with open(os.path.join(checkpoint_dir, "metric.json".format(epoch)), 'w') as fout:
if DEBUG:
print(f"Dumping metric to {checkpoint_dir}/metric.json... ", end="")
json.dump(full_metric, fout, indent=4, sort_keys=True)
if DEBUG:
print("Dumped!")
# dump to tensorboard per-epoch stats
for title, value in metric_dict.items():
writer.add_scalar(f"{name}/{title}_epoch", np.mean(value), epoch)
print(f"Epoch {epoch} {train_eval_mode} complete!")
return n_iters_total
def init_distributed(args):
if "WORLD_SIZE" not in os.environ or int(os.environ["WORLD_SIZE"]) < 1:
return False
torch.cuda.set_device(args.local_rank)
assert os.environ["MASTER_PORT"], "set the MASTER_PORT variable or use pytorch launcher"
assert os.environ["RANK"], "use pytorch launcher and explicitly state the rank of the process"
torch.manual_seed(args.seed)
# Default timeout: 30 min
# BUT NOTE: Must set `NCCL_BLOCKING_WAIT=1`
# NOTE: Timeout doesnt work
os.environ["NCCL_BLOCKING_WAIT"] = "1"
os.environ['CUDA_VISIBLE_DEVICES'] = "1,2"
torch.distributed.init_process_group(backend="nccl", init_method="env://")
if DEBUG:
os.environ["NCCL_DEBUG"] = "INFO"
return True
def main(args):
print("Number of available GPUs: {}".format(torch.cuda.device_count()))
# Attempt to fix overflow error with pickle
# See https://stackoverflow.com/questions/51562221/python-multiprocessing-overflowerrorcannot-serialize-a-bytes-object-larger-t
ctx = torch.multiprocessing.get_context()
ctx.reducer = pickle4reducer.Pickle4Reducer()
config = cfg.load_config(args.config)
global DEBUG
DEBUG = config.debug_mode if hasattr(config, "debug_mode") else False
print("Debugging Mode: ", DEBUG)
is_distributed = init_distributed(args)
print("Using distributed:", is_distributed)
master = True
if is_distributed and os.environ["RANK"]:
master = int(os.environ["RANK"]) == 0
if is_distributed:
print("Rank:", args.local_rank)
device = torch.device(args.local_rank)
else:
device = torch.device(0)
# config
config.opt.n_iters_per_epoch = config.opt.n_objects_per_epoch // config.opt.batch_size
if hasattr(config.opt, "n_objects_per_epoch_val"):
config.opt.n_iters_per_epoch_val = config.opt.n_objects_per_epoch_val // config.opt.val_batch_size
else:
config.opt.n_iters_per_epoch_val = None
model = {
"ransac": RANSACTriangulationNet,
"alg": AlgebraicTriangulationNet,
"vol": VolumetricTriangulationNet
}[config.model.name](config, device=device).to(device)
# NOTE: May be a bad idea to share memory since NCCL used
# https://pytorch.org/docs/stable/distributed.html#torch.distributed.Backend
# model.share_memory()
if config.model.init_weights:
state_dict = torch.load(config.model.checkpoint)
for key in list(state_dict.keys()):
new_key = key.replace("module.", "")
state_dict[new_key] = state_dict.pop(key)
model.load_state_dict(state_dict, strict=False)
print("Successfully loaded pretrained weights for whole model")
# criterion
criterion_class = {
"MSE": KeypointsMSELoss,
"MSESmooth": KeypointsMSESmoothLoss,
"MAE": KeypointsMAELoss
}[config.opt.criterion]
if config.opt.criterion == "MSESmooth":
criterion = criterion_class(config.opt.mse_smooth_threshold)
else:
criterion = criterion_class()
# optimizer
opt = None
if not args.eval:
print("Optimising model...")
if config.model.name == "vol":
opt = torch.optim.Adam(
[{'params': model.backbone.parameters()},
{'params': model.process_features.parameters(), 'lr': config.opt.process_features_lr if hasattr(config.opt, "process_features_lr") else config.opt.lr},
{'params': model.volume_net.parameters(), 'lr': config.opt.volume_net_lr if hasattr(config.opt, "volume_net_lr") else config.opt.lr}
],
lr=config.opt.lr
)
else:
opt = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=config.opt.lr)
# datasets
print("Loading data...")
train_dataloader, val_dataloader, train_sampler = setup_dataloaders(config, distributed_train=is_distributed)
# experiment
experiment_dir, writer = None, None
if master:
experiment_dir, writer = setup_experiment(config, type(model).__name__, is_train=not args.eval)
# multi-gpu
if is_distributed:
model = DistributedDataParallel(model, device_ids=[device])
if not args.eval:
print(f"Performing training with {config.opt.n_epochs} total epochs...")
# train loop
n_iters_total_train, n_iters_total_val = 0, 0
for epoch in range(config.opt.n_epochs):
if train_sampler is not None:
train_sampler.set_epoch(epoch)
if DEBUG:
print(f"Training epoch {epoch}...")
# Cache needs to be emptied first
# torch.cuda.empty_cache()
# print("CUDA Cache Empty!")
n_iters_total_train = one_epoch(model, criterion, opt, config, train_dataloader, device, epoch, n_iters_total=n_iters_total_train, is_train=True, master=master, experiment_dir=experiment_dir, writer=writer)
if DEBUG:
print(f"Epoch {epoch} training complete!")
# torch.cuda.empty_cache()
print(f"Evaluating epoch {epoch}...")
n_iters_total_val = one_epoch(model, criterion, opt, config, val_dataloader, device, epoch, n_iters_total=n_iters_total_val, is_train=False, master=master, experiment_dir=experiment_dir, writer=writer)
if DEBUG:
print(f"Epoch {epoch} evaluation complete!")
if master:
checkpoint_dir = os.path.join(experiment_dir, "checkpoints", "{:04}".format(epoch))
os.makedirs(checkpoint_dir, exist_ok=True)
if DEBUG:
print(f"Saving checkpoints to {checkpoint_dir}/weights.pth... ", end="")
torch.save(model.state_dict(), os.path.join(checkpoint_dir, "weights.pth"))
if DEBUG:
print("Checkpoint saved!")
print(f"{n_iters_total_train} iters done.")
else:
if args.eval_dataset == 'train':
one_epoch(model, criterion, opt, config, train_dataloader, device, 0, n_iters_total=0, is_train=False, master=master, experiment_dir=experiment_dir, writer=writer)
else:
one_epoch(model, criterion, opt, config, val_dataloader, device, 0, n_iters_total=0, is_train=False, master=master, experiment_dir=experiment_dir, writer=writer)
print("Done.")
if __name__ == '__main__':
args = parse_args()
print("args: {}".format(args))
main(args)