-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
59 lines (47 loc) · 1.44 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import torch
import torch.nn as nn
def save_tensor(t, fn):
m = nn.Module()
par = nn.Parameter(t)
m.register_parameter("0",par)
torch.jit.script(m).save(fn)
# Check for CUDA availability
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Define a Sequential model without bias
model = nn.Sequential(
nn.Linear(784, 1000, bias=False),
nn.ReLU(),
nn.Linear(1000, 1773, bias=False),
nn.ReLU(),
nn.Linear(1773, 1773, bias=False),
nn.ReLU(),
nn.Linear(1773, 1773, bias=False),
nn.ReLU(),
nn.Linear(1773, 1773, bias=False),
nn.ReLU(),
nn.Linear(1773, 1773, bias=False),
nn.ReLU(),
nn.Linear(1773, 1124, bias=False),
nn.ReLU(),
nn.Linear(1124, 1000, bias=False)
).to(device)
# For demo purposes, using dummy weights
torch.save(model.state_dict(), "model.pth")
model.load_state_dict(torch.load("model.pth"))
model.eval()
# Using tracing
sample_input = torch.randn(256, 784).to(device)
sample_output = model(sample_input)
# Save sample_input
save_tensor(sample_input, "sample_input.pt")
save_tensor(sample_output, "sample_output.pt")
traced_model = torch.jit.trace(model, sample_input[:1])
print(sample_input)
print(sample_output)
# Save traced model
traced_model.save("traced_model.pt")
# _ = torch.load("sample_input.pt")
# _ = torch.load("sample_output.pt")
# x = torch.randn(3, 3)
# traced_script_module = torch.jit.trace_module(x, ())
# traced_script_module.save("model.pt")