-
Notifications
You must be signed in to change notification settings - Fork 0
/
Matrix_P.tex
158 lines (120 loc) · 3.5 KB
/
Matrix_P.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
\documentclass{beamer}
\usetheme{Copenhagen}
\title{Matrix Project}
\subtitle{EE1390- Intro to AI and ML}
\usepackage{graphicx}
\graphicspath{{./images/}}
\author{
Md.Sadiq - \
\texttt{EE18BTECH11051}
\and \\
S.Abdur Rahman Nawaz - \
\texttt{EE18BTECH11052}
}
\institute{IIT HYDERABAD}
\date{February 15, 2019}
\subject{JEE questions solving using python}
\AtBeginSubsection[]
{
\begin{frame}<beamer>{Outline}
\tableofcontents[currentsection,currentsubsection]
\end{frame}
}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}{Outline}
\tableofcontents
\end{frame}
\section{Problem Statement}
\begin{frame}{IIT JEE 2005 Question}
Q.Tangent to the curve $y = x^2 + 6$ at a point (1,7) touches the circle $x^2 + y^2 + 16x + 12y + k = 0$. Then the Coordinates of Q are \\
(a) (-6, -11)\\
(b) (-9, -13)\\
(c) (10, -15)\\
(d) (-6, -7)\\
\end{frame}
\section{Solution}
\begin{frame}{Solution}
\begin{center}
\includegraphics[scale =0.35]{Fig1.png}
\end{center}
\end{frame}
\begin{frame}{Solution}
The given parabola equation is \\
\begin{equation}
y = x^2 + 6 => x^2 - y + 6 = 0
\end{equation}
writing it in matrix form
\begin{equation}
\mathbf{x}^\intercal\begin{pmatrix} 1 \ 0 \\ 0 \ 0 \end{pmatrix}\mathbf{x} + \begin{pmatrix} 0 \\ -1 \end{pmatrix}\mathbf{x} + 6 = 0
\end{equation}
Equation of a standard second order conic is
\begin{equation}
\mathbf{x}^\intercal\mathbf{V}\mathbf{x} + 2\mathbf{U}^\intercal\mathbf{x} + F = 0
\end{equation}
On comparing
\begin{equation}
V = \begin{pmatrix} 1 \ 0 \\ 0 \ 0 \end{pmatrix} \ U = \begin{pmatrix} 0 \ -1/2 \end{pmatrix} and\ F = 6
\end{equation}
\end{frame}
\begin{frame}{Solution}
And for a standard second order conic the equation of tangent at P is
\begin{equation}
(\mathbf{P}^\intercal\mathbf{V} + \mathbf{U}^\intercal)\mathbf{x} + \mathbf{P}^\intercal\mathbf{U} + F = 0
\end{equation}
And now substituting all the values the equation of tangent is
\begin{equation}
\begin{pmatrix} -2 \ 1 \end{pmatrix}\mathbf{x} = 5
\end{equation}
Any equation of a circle is given as
\begin{equation}
||x-c||^{2} = r^2
\end{equation}
\begin{equation}
(\mathbf{x-c})^\intercal(\mathbf{x-c}) = r^2
\end{equation}
\begin{equation}
\mathbf{x}^\intercal\mathbf{x} - 2\mathbf{c}\mathbf{x} = r^2 - \mathbf{c}^\intercal\mathbf{c}
\end{equation}
\end{frame}
\begin{frame}{Solution}
On comparing it with the given equation
\begin{equation}
x^2 + y^2 + 16x + 12y + k = 0
\end{equation}
Centre of the circle c is
\begin{equation}
c = \begin{pmatrix} -8 \\ -6 \end{pmatrix}
\end{equation}
\begin{center}
\includegraphics[scale =0.35]{Fig2.png}
\end{center}
\end{frame}
\begin{frame}{Solution}
Equation of tangent $\mathbf{n_{1}}\mathbf{x} = p_{1}$\\
Equation of a line perpendicular to tangent and passing through c is,
\begin{equation}
\mathbf{n_{2}}(\mathbf{x} - \mathbf{c}) = 0
\end{equation}
Where $\mathbf{n_{2}}$ can be easily calculated using $\mathbf{n_{1}}$ and orthogonal matrix\\
Which can be written as
\begin{equation}
\mathbf{n_{2}}\mathbf{x} = p_{2} \ where\ p_{2} = \mathbf{n_{2}}\mathbf{c}
\end{equation}
And then the point Q is the intersection of both the lines i.e the Tangent and the Normal
Which gives $ Q = (-6, -7) $
\end{frame}
\section{Graphical representation}
\begin{frame}{Graphical representation}
\begin{center}
\includegraphics[scale =0.35]{Fig1.png}
\end{center}
\end{frame}
\begin{frame}{Final Slide}
\begin{center}
THANK YOU
\end{center}
\end{frame}
\end{document}