-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalysis.py
213 lines (201 loc) · 8.38 KB
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from read import get_df_results, get_df_segments_with_gt, get_df_annotations
from sklearn import metrics
import numpy as np
import os
import pandas as pd
import matplotlib.pyplot as plt
from tqdm import tqdm
result_path_base = "results/OPP-115/"
OVERWRITE = False
np.set_printoptions(threshold=np.inf)
RELEVANT_COLUMNS = [ # "Other",
"User Choice/Control",
"First Party Collection/Use",
"Third Party Sharing/Collection",
"Do Not Track",
"User Access, Edit and Deletion",
"Data Security",
"Data Retention",
"International and Specific Audiences",
"Policy Change",
]
RELEVANT_COLUMNS_SHORT = [ # "Other",
"User Choice...",
"First Party...",
"Third Party...",
"Do Not Track...",
"User Access...",
"Data Security",
"Data Retention",
"International...",
"Policy Change",
]
def get_confidence_intervals(df_segments_with_gt, df_results, report):
if len(df_segments_with_gt["policy_ID"].unique()) == 115:
# subsample for confidence intervals
print("Subsample for confidence intervals...")
sampled_reports = {
"weighted": [],
"micro": [],
"macro": [],
"samples": [],
"precision": [],
"recall": [],
"f1": [],
}
for i in tqdm(range(1000)):
# get 41 random policies
sampled_policies = np.random.choice(
df_segments_with_gt["policy_ID"].unique(), 41, replace=False
)
#print(sampled_policies)
df_sampled_index = df_segments_with_gt.index[
df_segments_with_gt["policy_ID"].isin(sampled_policies)
]
#print(df_sampled_index)
y_true_sampled = df_segments_with_gt.loc[df_sampled_index][
RELEVANT_COLUMNS
].values
y_pred_sampled = df_results.loc[df_sampled_index][RELEVANT_COLUMNS].values
#print(y_pred_sampled)
#print(len(y_pred_sampled), len(y_pred_sampled[0]))
# obtain performance metrics for each class for each subsample
report_per_class = metrics.precision_recall_fscore_support(
y_true_sampled, y_pred_sampled, average=None, zero_division=0.0
)
sampled_reports["precision"].append(report_per_class[0])
sampled_reports["recall"].append(report_per_class[1])
sampled_reports["f1"].append(report_per_class[2])
# obtain class average performance metrics for each subsample
for average in ["weighted", "micro", "macro", "samples"]:
sampled_reports[average].append(
metrics.precision_recall_fscore_support(
y_true_sampled,
y_pred_sampled,
average=average,
zero_division=0.0,
)
)
# enter subsample intervals into report
report[
[
"lb_conf_precision",
"lb_conf_recall",
"lb_conf_f1",
"ub_conf_precision",
"ub_conf_recall",
"ub_conf_f1",
]
] = 0.0
for average in ["weighted", "micro", "macro", "samples"]:
lower_bounds = np.percentile(
np.asarray(sampled_reports[average])[:, 0:3], 2.5, axis=0
)
upper_bounds = np.percentile(
np.asarray(sampled_reports[average])[:, 0:3], 97.5, axis=0
)
report.loc[
average + " avg", ["lb_conf_precision", "lb_conf_recall", "lb_conf_f1"]
] = lower_bounds
report.loc[
average + " avg", ["ub_conf_precision", "ub_conf_recall", "ub_conf_f1"]
] = upper_bounds
for metric in ["precision", "recall", "f1"]:
lower_bounds = np.percentile(
np.asarray(sampled_reports[metric]), 2.5, axis=0
)
upper_bounds = np.percentile(
np.asarray(sampled_reports[metric]), 97.5, axis=0
)
report.loc[RELEVANT_COLUMNS, ["lb_conf_" + metric]] = lower_bounds
report.loc[RELEVANT_COLUMNS, ["ub_conf_" + metric]] = upper_bounds
return report
if __name__ == "__main__":
result_paths = []
for path, subdirs, files in os.walk(result_path_base):
for name in files:
if name == "results.xlsx":
result_paths.append(os.path.join(path, name))
df_annotations = get_df_annotations("OPP-115")
for result_path in result_paths:
if not (OVERWRITE or not os.path.exists(os.path.join(os.path.dirname(result_path), "report.xlsx"))):
continue
# obtain data
print("Obtaining saved data for analysis...")
df_segments_with_gt = get_df_segments_with_gt("OPP-115", df_annotations, remove_html_tags=True)
df_segments_with_gt.set_index("complete_segment_ID", inplace=True)
df_results = get_df_results(result_path)
df_results.set_index("complete_segment_ID", inplace=True)
df_segments_with_gt = df_segments_with_gt.loc[df_results.index]
for column in RELEVANT_COLUMNS:
if column not in df_results.columns:
df_results[column] = 0
# obtain dummy arrays, removing other category
y_true = df_segments_with_gt[RELEVANT_COLUMNS].values
y_pred = df_results[RELEVANT_COLUMNS].values
#print(y_pred)
ind_only_other = np.sum(y_true, axis=1) == 0
y_true = y_true[~ind_only_other]
y_pred = y_pred[~ind_only_other]
#print(y_pred)
df_results = df_results[~ind_only_other]
df_segments_with_gt = df_segments_with_gt[~ind_only_other]
# generate report of performance metrics in df form
report = metrics.classification_report(
y_true,
y_pred,
target_names=RELEVANT_COLUMNS,
output_dict=True,
zero_division=0.0,
)
report = pd.DataFrame(report).transpose()
report = get_confidence_intervals(df_segments_with_gt, df_results, report)
# create an overview over the misclassified samples
print("Create an overview over the misclassified samples...")
correctly_classified = np.all(np.equal(y_pred, y_true), axis=1)
ground_truth = y_true[~correctly_classified]
ground_truth_list = []
for idx in range(len(ground_truth)):
ground_truth_list.append(
list(np.asarray(RELEVANT_COLUMNS)[ground_truth[idx] == 1])
)
ground_truth_list = ["&".join(item) for item in ground_truth_list]
pred = y_pred[~correctly_classified]
pred_list = []
for idx in range(len(pred)):
pred_list.append(list(np.asarray(RELEVANT_COLUMNS)[pred[idx] == 1]))
pred_list = ["&".join(item) for item in pred_list]
df_misclassified = df_results[~correctly_classified]
df_misclassified.loc[:, ["gt"]] = ground_truth_list
df_misclassified.loc[:, ["pred"]] = pred_list
df_misclassified = df_misclassified.drop(RELEVANT_COLUMNS, axis=1)
df_misclassified = df_misclassified.drop("Other", axis=1, errors="ignore")
# obtaining confusion matrix removing multilabel samples
print("Obtain confusion matrix...")
ind_multilabel_true = np.sum(y_true, axis=1) == 1
y_true = y_true[ind_multilabel_true]
y_pred = y_pred[ind_multilabel_true]
ind_multilabel_pred = np.sum(y_pred, axis=1) == 1
y_true = y_true[ind_multilabel_pred]
y_pred = y_pred[ind_multilabel_pred]
disp = metrics.ConfusionMatrixDisplay.from_predictions(
y_true.argmax(axis=1),
y_pred.argmax(axis=1),
display_labels=RELEVANT_COLUMNS_SHORT,
# normalize="true",
).plot(
xticks_rotation="vertical"
) # ,values_format=".2f")
plt.tight_layout()
plt.show()
# saving output
print("Saving ouput...")
df_misclassified.to_excel(
os.path.join(os.path.dirname(result_path), "misclassified.xlsx")
)
report.to_excel(os.path.join(os.path.dirname(result_path), "report.xlsx"))
plt.savefig(os.path.join(os.path.dirname(result_path), "confusion.png"))
print("Done!")
# print report with all data
print("RESULTS OBTAINED FOR ALL DATA:")
print(report)