-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmodel_compat.py
152 lines (124 loc) · 5.88 KB
/
model_compat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import torch.nn as nn
from functions import ReverseLayerF
import torch
from utils import initialize_weights
import torch.nn.utils.weight_norm as weightNorm
import torch.nn.functional as F
def init_weights(m):
classname = m.__class__.__name__
if classname.find('Conv2d') != -1 or classname.find('ConvTranspose2d') != -1:
nn.init.kaiming_uniform_(m.weight)
nn.init.zeros_(m.bias)
elif classname.find('BatchNorm') != -1:
nn.init.normal_(m.weight, 1.0, 0.02)
nn.init.zeros_(m.bias)
elif classname.find('Linear') != -1:
nn.init.xavier_normal_(m.weight)
nn.init.zeros_(m.bias)
class Classifier(nn.Module):
def __init__(self, num_classes=2):
super(Classifier, self).__init__()
self.fc = weightNorm(nn.Linear(2048, num_classes), name="weight")
self.fc.apply(init_weights)
# self.fc = nn.Linear(2048, num_classes)
def forward(self, input_data):
class_label = self.fc(input_data)
return class_label
class contrastor(nn.Module):
def __init__(self, output_size=256):
super(contrastor, self).__init__()
self.shared_encoder_pred_domain = nn.Sequential()
self.shared_encoder_pred_domain.add_module('d_se6', nn.Linear(in_features=2048, out_features=2048))
self.shared_encoder_pred_domain.add_module('relu_se6', nn.ReLU())
# classify two domain
# self.shared_encoder_pred_domain.add_module('d_se7', nn.Linear(in_features=1024, out_features=512))
# self.shared_encoder_pred_domain.add_module('relu_se7', nn.LeakyReLU())
self.shared_encoder_pred_domain.add_module('d_se8', nn.Linear(in_features=2048, out_features=output_size))
def forward(self, input_data):
reflect_vec = self.shared_encoder_pred_domain(input_data)
return reflect_vec
class LinearAverage(nn.Module):
def __init__(self, inputSize, outputSize, T=0.05, momentum=0.0):
super(LinearAverage, self).__init__()
self.nLem = outputSize
self.momentum = momentum
self.register_buffer('params', torch.tensor([T, momentum]));
self.register_buffer('memory', torch.zeros(outputSize, inputSize))
self.flag = 0
self.T = T
self.memory = self.memory.cuda()
def forward(self, x, y):
out = torch.mm(x, self.memory.t()) / self.T
return out
def update_weight(self, features, index):
index = torch.from_numpy(index).cuda()
if not self.flag:
weight_pos = self.memory.index_select(0, index.data.view(-1)).resize_as_(features)
weight_pos.mul_(0.0)
weight_pos.add_(torch.mul(features.data, 1.0))
w_norm = weight_pos.pow(2).sum(1, keepdim=True).pow(0.5)
updated_weight = weight_pos.div(w_norm)
self.memory.index_copy_(0, index, updated_weight)
self.flag = 1
else:
weight_pos = self.memory.index_select(0, index.data.view(-1)).resize_as_(features)
weight_pos.mul_(self.momentum)
weight_pos.add_(torch.mul(features.data, 1 - self.momentum))
w_norm = weight_pos.pow(2).sum(1, keepdim=True).pow(0.5)
updated_weight = weight_pos.div(w_norm)
self.memory.index_copy_(0, index, updated_weight)
self.memory = F.normalize(self.memory)#.cuda()
def set_weight(self, features, index):
self.memory.index_copy_(0, index, features)
class Discriminator_fea(nn.Module):
def __init__(self, code_size=100, n_class=2, domain_class=3):
super(Discriminator_fea, self).__init__()
self.shared_encoder_pred_domain = nn.Sequential()
self.shared_encoder_pred_domain.add_module('d_se6', nn.Linear(in_features=2048, out_features=1024))
self.shared_encoder_pred_domain.add_module('relu_se7', nn.LeakyReLU(0.01))
# classify two domain
self.shared_encoder_pred_domain.add_module('d_se8', nn.Linear(in_features=1024, out_features=1))
def forward(self, input_data, p=0):
reversed_re_flatten = ReverseLayerF.apply(input_data, p)
domain_label = self.shared_encoder_pred_domain(reversed_re_flatten)
return domain_label
class generator_fea_deconv(nn.Module):
# Network Architecture is exactly same as in infoGAN (https://arxiv.org/abs/1606.03657)
# Architecture : FC1024_BR-FC7x7x128_BR-(64)4dc2s_BR-(1)4dc2s_S
def __init__(self, input_dim=100, input_size=224, class_num=10):
super(generator_fea_deconv, self).__init__()
self.input_dim = input_dim
self.input_size = input_size
self.class_num = class_num
self.batch_size = 64
# label embedding
self.label_emb = nn.Embedding(self.class_num, self.input_dim)
self.fc = nn.Sequential(
nn.Linear(self.input_dim, 1024),
nn.BatchNorm1d(1024),
nn.ReLU(),
# nn.Linear(1024, 128 * (self.input_size // 4) * (self.input_size // 4)),
# nn.BatchNorm1d(128 * (self.input_size // 4) * (self.input_size // 4)),
nn.Linear(1024, 128 * (self.input_size // 16) * (self.input_size // 16)),
nn.BatchNorm1d(128 * (self.input_size // 16) * (self.input_size // 16)),
nn.ReLU(),
)
self.deconv = nn.Sequential(
nn.ConvTranspose2d(512, 256, kernel_size=2, stride=1, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.ConvTranspose2d(256, 128, kernel_size=3, stride=1, padding=2),
nn.BatchNorm2d(128),
nn.ReLU(),
# nn.ConvTranspose2d(64, self.output_dim, 4, 2, 1),
# nn.Tanh(),
)
initialize_weights(self)
def forward(self, input, label):
x = torch.mul(self.label_emb(label), input)
# x = torch.cat([input, label], 1)
x = self.fc(x)
x = x.view(-1, 512, (self.input_size // 32), (self.input_size // 32))
x = self.deconv(x)
x = x.view(x.size(0), -1)
return x