-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathauto_augment.py
262 lines (208 loc) · 9.44 KB
/
auto_augment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import random
import numpy as np
import scipy
from scipy import ndimage
from PIL import Image, ImageEnhance, ImageOps
import cv2
import torch
class AutoAugment(object):
def __init__(self):
self.policies = [
['Invert', 0.1, 7, 'Contrast', 0.2, 6],
['Rotate', 0.7, 2, 'TranslateX', 0.3, 9],
['Sharpness', 0.8, 1, 'Sharpness', 0.9, 3],
['ShearY', 0.5, 8, 'TranslateY', 0.7, 9],
['AutoContrast', 0.5, 8, 'Equalize', 0.9, 2],
['ShearY', 0.2, 7, 'Posterize', 0.3, 7],
['Color', 0.4, 3, 'Brightness', 0.6, 7],
['Sharpness', 0.3, 9, 'Brightness', 0.7, 9],
['Equalize', 0.6, 5, 'Equalize', 0.5, 1],
['Contrast', 0.6, 7, 'Sharpness', 0.6, 5],
['Color', 0.7, 7, 'TranslateX', 0.5, 8],
['Equalize', 0.3, 7, 'AutoContrast', 0.4, 8],
['TranslateY', 0.4, 3, 'Sharpness', 0.2, 6],
['Brightness', 0.9, 6, 'Color', 0.2, 8],
['Solarize', 0.5, 2, 'Invert', 0, 0.3],
['Equalize', 0.2, 0, 'AutoContrast', 0.6, 0],
['Equalize', 0.2, 8, 'Equalize', 0.6, 4],
['Color', 0.9, 9, 'Equalize', 0.6, 6],
['AutoContrast', 0.8, 4, 'Solarize', 0.2, 8],
['Brightness', 0.1, 3, 'Color', 0.7, 0],
['Solarize', 0.4, 5, 'AutoContrast', 0.9, 3],
['TranslateY', 0.9, 9, 'TranslateY', 0.7, 9],
['AutoContrast', 0.9, 2, 'Solarize', 0.8, 3],
['Equalize', 0.8, 8, 'Invert', 0.1, 3],
['TranslateY', 0.7, 9, 'AutoContrast', 0.9, 1],
]
def __call__(self, img):
img = apply_policy(img, self.policies[random.randrange(len(self.policies))])
return img
operations = {
'ShearX': lambda img, magnitude: shear_x(img, magnitude),
'ShearY': lambda img, magnitude: shear_y(img, magnitude),
'TranslateX': lambda img, magnitude: translate_x(img, magnitude),
'TranslateY': lambda img, magnitude: translate_y(img, magnitude),
'Rotate': lambda img, magnitude: rotate(img, magnitude),
'AutoContrast': lambda img, magnitude: auto_contrast(img, magnitude),
'Invert': lambda img, magnitude: invert(img, magnitude),
'Equalize': lambda img, magnitude: equalize(img, magnitude),
'Solarize': lambda img, magnitude: solarize(img, magnitude),
'Posterize': lambda img, magnitude: posterize(img, magnitude),
'Contrast': lambda img, magnitude: contrast(img, magnitude),
'Color': lambda img, magnitude: color(img, magnitude),
'Brightness': lambda img, magnitude: brightness(img, magnitude),
'Sharpness': lambda img, magnitude: sharpness(img, magnitude),
'Cutout': lambda img, magnitude: cutout(img, magnitude),
}
def apply_policy(img, policy):
if random.random() < policy[1]:
img = operations[policy[0]](img, policy[2])
if random.random() < policy[4]:
img = operations[policy[3]](img, policy[5])
return img
def transform_matrix_offset_center(matrix, x, y):
o_x = float(x) / 2 + 0.5
o_y = float(y) / 2 + 0.5
offset_matrix = np.array([[1, 0, o_x], [0, 1, o_y], [0, 0, 1]])
reset_matrix = np.array([[1, 0, -o_x], [0, 1, -o_y], [0, 0, 1]])
transform_matrix = offset_matrix @ matrix @ reset_matrix
return transform_matrix
def shear_x(img, magnitude):
img = np.array(img)
magnitudes = np.linspace(-0.3, 0.3, 11)
transform_matrix = np.array([[1, random.uniform(magnitudes[magnitude], magnitudes[magnitude+1]), 0],
[0, 1, 0],
[0, 0, 1]])
transform_matrix = transform_matrix_offset_center(transform_matrix, img.shape[0], img.shape[1])
affine_matrix = transform_matrix[:2, :2]
offset = transform_matrix[:2, 2]
img = np.stack([ndimage.interpolation.affine_transform(
img[:, :, c],
affine_matrix,
offset) for c in range(img.shape[2])], axis=2)
img = Image.fromarray(img)
return img
def shear_y(img, magnitude):
img = np.array(img)
magnitudes = np.linspace(-0.3, 0.3, 11)
transform_matrix = np.array([[1, 0, 0],
[random.uniform(magnitudes[magnitude], magnitudes[magnitude+1]), 1, 0],
[0, 0, 1]])
transform_matrix = transform_matrix_offset_center(transform_matrix, img.shape[0], img.shape[1])
affine_matrix = transform_matrix[:2, :2]
offset = transform_matrix[:2, 2]
img = np.stack([ndimage.interpolation.affine_transform(
img[:, :, c],
affine_matrix,
offset) for c in range(img.shape[2])], axis=2)
img = Image.fromarray(img)
return img
def translate_x(img, magnitude):
img = np.array(img)
magnitudes = np.linspace(-150/331, 150/331, 11)
transform_matrix = np.array([[1, 0, 0],
[0, 1, img.shape[1]*random.uniform(magnitudes[magnitude], magnitudes[magnitude+1])],
[0, 0, 1]])
transform_matrix = transform_matrix_offset_center(transform_matrix, img.shape[0], img.shape[1])
affine_matrix = transform_matrix[:2, :2]
offset = transform_matrix[:2, 2]
img = np.stack([ndimage.interpolation.affine_transform(
img[:, :, c],
affine_matrix,
offset) for c in range(img.shape[2])], axis=2)
img = Image.fromarray(img)
return img
def translate_y(img, magnitude):
img = np.array(img)
magnitudes = np.linspace(-150/331, 150/331, 11)
transform_matrix = np.array([[1, 0, img.shape[0]*random.uniform(magnitudes[magnitude], magnitudes[magnitude+1])],
[0, 1, 0],
[0, 0, 1]])
transform_matrix = transform_matrix_offset_center(transform_matrix, img.shape[0], img.shape[1])
affine_matrix = transform_matrix[:2, :2]
offset = transform_matrix[:2, 2]
img = np.stack([ndimage.interpolation.affine_transform(
img[:, :, c],
affine_matrix,
offset) for c in range(img.shape[2])], axis=2)
img = Image.fromarray(img)
return img
def rotate(img, magnitude):
img = np.array(img)
magnitudes = np.linspace(-30, 30, 11)
theta = np.deg2rad(random.uniform(magnitudes[magnitude], magnitudes[magnitude+1]))
transform_matrix = np.array([[np.cos(theta), -np.sin(theta), 0],
[np.sin(theta), np.cos(theta), 0],
[0, 0, 1]])
transform_matrix = transform_matrix_offset_center(transform_matrix, img.shape[0], img.shape[1])
affine_matrix = transform_matrix[:2, :2]
offset = transform_matrix[:2, 2]
img = np.stack([ndimage.interpolation.affine_transform(
img[:, :, c],
affine_matrix,
offset) for c in range(img.shape[2])], axis=2)
img = Image.fromarray(img)
return img
def auto_contrast(img, magnitude):
img = ImageOps.autocontrast(img)
return img
def invert(img, magnitude):
img = ImageOps.invert(img)
return img
def equalize(img, magnitude):
img = ImageOps.equalize(img)
return img
def solarize(img, magnitude):
magnitudes = np.linspace(0, 256, 11)
img = ImageOps.solarize(img, random.uniform(magnitudes[magnitude], magnitudes[magnitude+1]))
return img
def posterize(img, magnitude):
magnitudes = np.linspace(4, 8, 11)
img = ImageOps.posterize(img, int(round(random.uniform(magnitudes[magnitude], magnitudes[magnitude+1]))))
return img
def contrast(img, magnitude):
magnitudes = np.linspace(0.1, 1.9, 11)
img = ImageEnhance.Contrast(img).enhance(random.uniform(magnitudes[magnitude], magnitudes[magnitude+1]))
return img
def color(img, magnitude):
magnitudes = np.linspace(0.1, 1.9, 11)
img = ImageEnhance.Color(img).enhance(random.uniform(magnitudes[magnitude], magnitudes[magnitude+1]))
return img
def brightness(img, magnitude):
magnitudes = np.linspace(0.1, 1.9, 11)
img = ImageEnhance.Brightness(img).enhance(random.uniform(magnitudes[magnitude], magnitudes[magnitude+1]))
return img
def sharpness(img, magnitude):
magnitudes = np.linspace(0.1, 1.9, 11)
img = ImageEnhance.Sharpness(img).enhance(random.uniform(magnitudes[magnitude], magnitudes[magnitude+1]))
return img
def cutout(org_img, magnitude=None):
img = np.array(img)
magnitudes = np.linspace(0, 60/331, 11)
img = np.copy(org_img)
mask_val = img.mean()
if magnitude is None:
mask_size = 16
else:
mask_size = int(round(img.shape[0]*random.uniform(magnitudes[magnitude], magnitudes[magnitude+1])))
top = np.random.randint(0 - mask_size//2, img.shape[0] - mask_size)
left = np.random.randint(0 - mask_size//2, img.shape[1] - mask_size)
bottom = top + mask_size
right = left + mask_size
if top < 0:
top = 0
if left < 0:
left = 0
img[top:bottom, left:right, :].fill(mask_val)
img = Image.fromarray(img)
return img
def _random_affine_augmentation(x):
M = np.float32([[1 + np.random.normal(0.0, 0.1), np.random.normal(0.0, 0.1), 0], [np.random.normal(0.0, 0.1), 1 + np.random.normal(0.0, 0.1), 0]])
rows, cols =x.shape[1:3]
dst = cv2.warpAffine(np.transpose(x.numpy(), [1, 2, 0]), M, (cols,rows))
dst = np.transpose(dst, [2, 0, 1])
return torch.from_numpy(dst)
def _gaussian_blur(x, sigma=0.1):
ksize = int(sigma + 0.5) * 8 + 1
dst = cv2.GaussianBlur(x.numpy(), (ksize, ksize), sigma)
return torch.from_numpy(dst)