Skip to content

Latest commit

 

History

History
51 lines (35 loc) · 1.66 KB

README.md

File metadata and controls

51 lines (35 loc) · 1.66 KB

quip_lung_cancer_detection

This repo contains training and prediction code for 6-class Lung cancer detection using pretrained resnet. The prediction model was trained with LUAD images.

Dependencies

Setup conf/variables.sh

  • Change the BASE_DIR to the path of your folder after you clone the git repo

Training

  • Go to folder "training_codes", run python train_lung_john_6classes.py

WSIs prediction

  • Go to folder "scripts", run bash svs_2_heatmap.sh

Docker Instructions

Build the docker image by:

docker build -t luad_detection . (Note the dot at the end).

Step 1:

Create folder named "data" and subfolders below on the host machine:

  • data/svs: to contains *.svs files
  • data/patches: to contain output from patch extraction
  • data/log: to contain log files
  • data/heatmap_txt: to contain prediction output
  • data/heatmap_jsons: to contain prediction output as json files

Step 2:

  • Run the docker container as follows:
nvidia-docker run --name luad-detection -itd -v <path-to-data>:/data -e CUDA_VISIBLE_DEVICES='<cuda device id>' luad_detection svs_2_heatmap.sh 

CUDA_VISIBLE_DEVICES -- set to select the GPU to use

The following example runs the cancer detection pipeline. It will process images in /home/user/data/svs and output the results to /home/user/data.

nvidia-docker run --name luad-detection -itd -v /home/user/data:/data -e CUDA_VISIBLE_DEVICES='0' luad_detection svs_2_heatmap.sh