-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
223 lines (173 loc) · 8.72 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import numpy as np
import torch
from torch import nn
from pytorch_pretrained_bert import BertModel
from misc import flat_list
from misc import sim_matrix, contrastive_loss
from misc import iterative_support, conflict_judge
from utils import UnitAlphabet, LabelAlphabet
from sklearn.metrics.pairwise import cosine_similarity
class PhraseClassifier(nn.Module):
def __init__(self,
lexical_vocab: UnitAlphabet,
label_vocab: LabelAlphabet,
hidden_dim: int,
dropout_rate: float,
neg_rate: float,
clloss_percent: float,
score_percent: float,
cl_scale: int,
cl_temp: float,
use_detach: bool,
bert_path: str):
super(PhraseClassifier, self).__init__()
self._lexical_vocab = lexical_vocab
self._label_vocab = label_vocab
self._neg_rate = neg_rate
self._clloss_percent = clloss_percent
self._score_percent = score_percent
self._cl_scale = cl_scale
self._cl_temp = cl_temp
self._use_detach = use_detach
self._encoder = BERT(bert_path)
self._classifier = MLP(self._encoder.dimension * 4, hidden_dim, len(label_vocab), dropout_rate)
self._criterion = nn.NLLLoss()
def forward(self, var_h, **kwargs):
con_repr = self._encoder(var_h, kwargs["mask_mat"], kwargs["starts"])
batch_size, token_num, hidden_dim = con_repr.size()
ext_row = con_repr.unsqueeze(2).expand(batch_size, token_num, token_num, hidden_dim)
ext_column = con_repr.unsqueeze(1).expand_as(ext_row)
table = torch.cat([ext_row, ext_column, ext_row - ext_column, ext_row * ext_column], dim=-1)
return self._classifier(table), self._classifier.get_dense(table)
def _pre_process_input(self, utterances):
lengths = [len(s) for s in utterances]
max_len = max(lengths)
pieces = iterative_support(self._lexical_vocab.tokenize, utterances)
units, positions = [], []
for tokens in pieces:
units.append(flat_list(tokens))
cum_list = np.cumsum([len(p) for p in tokens]).tolist()
positions.append([0] + cum_list[:-1])
sizes = [len(u) for u in units]
max_size = max(sizes)
cls_sign = self._lexical_vocab.CLS_SIGN
sep_sign = self._lexical_vocab.SEP_SIGN
pad_sign = self._lexical_vocab.PAD_SIGN
pad_unit = [[cls_sign] + s + [sep_sign] + [pad_sign] * (max_size - len(s)) for s in units]
starts = [[ln + 1 for ln in u] + [max_size + 1] * (max_len - len(u)) for u in positions]
var_unit = torch.LongTensor([self._lexical_vocab.index(u) for u in pad_unit])
attn_mask = torch.LongTensor([[1] * (lg + 2) + [0] * (max_size - lg) for lg in sizes])
var_start = torch.LongTensor(starts)
if torch.cuda.is_available():
var_unit = var_unit.cuda()
attn_mask = attn_mask.cuda()
var_start = var_start.cuda()
return var_unit, attn_mask, var_start, lengths
def _pre_process_output(self, entities, lengths):
positions, labels = [], []
batch_size = len(entities)
for utt_i in range(0, batch_size):
for segment in entities[utt_i]:
positions.append((utt_i, segment[0], segment[1]))
labels.append(segment[2])
for utt_i in range(0, batch_size):
reject_set = [(e[0], e[1]) for e in entities[utt_i]]
s_len = lengths[utt_i]
neg_num = int(s_len * self._neg_rate) + 1
candies = flat_list([[(i, j) for j in range(i, s_len) if (i, j) not in reject_set] for i in range(s_len)])
if len(candies) > 0:
sample_num = min(neg_num, len(candies))
assert sample_num > 0
np.random.shuffle(candies)
for i, j in candies[:sample_num]:
positions.append((utt_i, i, j))
labels.append("O")
var_lbl = torch.LongTensor(iterative_support(self._label_vocab.index, labels))
if torch.cuda.is_available():
var_lbl = var_lbl.cuda()
return positions, var_lbl
def estimate_CL(self, sentences, segments):
var_sent, attn_mask, start_mat, lengths = self._pre_process_input(sentences)
score_t, embedding_t = self(var_sent, mask_mat=attn_mask, starts=start_mat)
positions, targets = self._pre_process_output(segments, lengths)
targets = targets.cuda()
flat_s = torch.cat([score_t[[i], j, k] for i, j, k in positions], dim=0).cuda()
flat_e = torch.cat([embedding_t[[i], j, k] for i, j, k in positions], dim=0).cuda()
softmax_score = torch.log_softmax(flat_s, dim=-1)
CE_loss = self._criterion(softmax_score, targets.cuda())
CL_loss = contrastive_loss(flat_e.cuda(), targets.cuda(), detach = self._use_detach,temp = self._cl_temp, scale = self._cl_scale)
dict_center = {}
dict_num = {}
target_num = softmax_score.size()[1]
for i in range(0,target_num):
dict_center[i] = torch.zeros(embedding_t.size()[3])
dict_num[i] = 0
for i in range(0,len(targets)):
dict_num[targets[i].item()] = dict_num[targets[i].item()] + 1
for i in range(0,len(flat_e)):
dict_center[targets[i].item()] = dict_center[targets[i].item()] + (flat_e[i].detach().cpu()/dict_num[targets[i].item()])
return self._clloss_percent * CL_loss + (1-self._clloss_percent) * CE_loss, dict_center
def inference(self, sentences, dict_center):
var_sent, attn_mask, starts, lengths = self._pre_process_input(sentences)
log_items, embedding_t = self(var_sent, mask_mat=attn_mask, starts=starts)
score_t = torch.log_softmax(log_items, dim=-1)
bz, len_1 ,len_2 ,hidden_len = embedding_t.size()
embedding_t = embedding_t.view(-1,hidden_len)
center_tensor = torch.stack(list(dict_center.values()))
distance_score = sim_matrix(embedding_t.cpu(), center_tensor.cpu())
distance_score = torch.softmax(distance_score, dim=-1)
distance_score[:,0] = 0
distance_score = distance_score.view(bz,len_1,len_2,-1)
score_result = (1-self._score_percent) * score_t.cpu() + self._score_percent * distance_score.cpu()
val_table, idx_table = torch.max(score_result, dim=-1)
listing_it = idx_table.cpu().numpy().tolist()
listing_vt = val_table.cpu().numpy().tolist()
label_table = iterative_support(self._label_vocab.get, listing_it)
candidates = []
for l_mat, v_mat, sent_l in zip(label_table, listing_vt, lengths):
candidates.append([])
for i in range(0, sent_l):
for j in range(i, sent_l):
if l_mat[i][j] != "O":
candidates[-1].append((i, j, l_mat[i][j], v_mat[i][j]))
entities = []
for segments in candidates:
ordered_seg = sorted(segments, key=lambda e: -e[-1])
filter_list = []
for elem in ordered_seg:
flag = False
current = (elem[0], elem[1])
for prior in filter_list:
flag = conflict_judge(current, (prior[0], prior[1]))
if flag:
break
if not flag:
filter_list.append((elem[0], elem[1], elem[2]))
entities.append(sorted(filter_list, key=lambda e: e[0]))
return entities
class BERT(nn.Module):
def __init__(self, source_path):
super(BERT, self).__init__()
self._repr_model = BertModel.from_pretrained(source_path)
@property
def dimension(self):
return 768
def forward(self, var_h, attn_mask, starts):
all_hidden, _ = self._repr_model(var_h, attention_mask=attn_mask, output_all_encoded_layers=False)
batch_size, _, hidden_dim = all_hidden.size()
_, unit_num = starts.size()
positions = starts.unsqueeze(-1).expand(batch_size, unit_num, hidden_dim)
return torch.gather(all_hidden, dim=-2, index=positions)
class MLP(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, dropout_rate):
super(MLP, self).__init__()
self._densenet = nn.Sequential(nn.Linear(input_dim,hidden_dim),
nn.Tanh())
self._scorer = nn.Linear(hidden_dim, output_dim)
self._dropout = nn.Dropout(dropout_rate)
def forward(self, var_h):
return self._scorer(self._densenet(self._dropout(var_h)))
def get_dense(self, var_h):
return self._densenet(self._dropout(var_h))
def get_score(self, dense):
return self._scorer(dense)