-
Notifications
You must be signed in to change notification settings - Fork 1
/
misc.py
141 lines (108 loc) · 4.03 KB
/
misc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import time
import json
import codecs
import os
import numpy as np
import random
import torch
def iterative_support(func, query):
if isinstance(query, (list, tuple, set)):
return [iterative_support(func, i) for i in query]
return func(query)
def fix_random_seed(state_val):
random.seed(state_val)
np.random.seed(state_val)
if torch.cuda.is_available():
torch.cuda.manual_seed(state_val)
torch.cuda.manual_seed_all(state_val)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.manual_seed(state_val)
torch.random.manual_seed(state_val)
def flat_list(h_list):
e_list = []
for item in h_list:
if isinstance(item, list):
e_list.extend(flat_list(item))
else:
e_list.append(item)
return e_list
def f1_score(sent_list, pred_list, gold_list, script_path):
fn_out = 'eval_%04d.txt' % random.randint(0, 1000000000000)
if os.path.isfile(fn_out):
os.remove(fn_out)
text_file = open(fn_out, mode='w', encoding='utf-8')
for i, words in enumerate(sent_list):
tags_1 = gold_list[i]
tags_2 = pred_list[i]
for j, word in enumerate(words):
tag_1 = tags_1[j]
tag_2 = tags_2[j]
text_file.write('%s\t%s\t%s\n' % (word, tag_1, tag_2))
text_file.write('\n')
text_file.close()
cmd = 'perl %s -d "\t" < %s' % (script_path, fn_out)
msg = '\nStandard CoNNL perl script (author: Erik Tjong Kim Sang <[email protected]>, version: 2004-01-26):\n'
msg += ''.join(os.popen(cmd).readlines())
time.sleep(1.0)
if fn_out.startswith('eval_') and os.path.exists(fn_out):
os.remove(fn_out)
f1 = float(msg.split('\n')[3].split(':')[-1].strip())
precision = float(msg.split('\n')[3].split('precision:')[-1].split('%')[0].strip())
recall = float(msg.split('\n')[3].split('recall:')[-1].split('%')[0].strip())
return f1, precision, recall
def iob_tagging(entities, s_len):
tags = ["O"] * s_len
for el, er, et in entities:
for i in range(el, er + 1):
if i == el:
tags[i] = "B-" + et
else:
tags[i] = "I-" + et
return tags
def conflict_judge(line_x, line_y):
if line_x[0] == line_y[0]:
return True
if line_x[0] < line_y[0]:
if line_x[1] >= line_y[0]:
return True
if line_x[0] > line_y[0]:
if line_x[0] <= line_y[1]:
return True
return False
def extract_json_data(file_path):
with codecs.open(file_path, "r", "utf-8") as fr:
dataset = json.load(fr)
return dataset
def sim_matrix(a, b, eps=1e-8):
a_n, b_n = a.norm(dim=1)[:, None], b.norm(dim=1)[:, None]
a_norm = a / torch.max(a_n, eps * torch.ones_like(a_n))
b_norm = b / torch.max(b_n, eps * torch.ones_like(b_n))
sim_mt = torch.mm(a_norm, b_norm.transpose(0, 1))
return sim_mt
def contrastive_loss(embedding, label, detach = False, temp=0.1, scale=100):
if detach:
cosine_sim = sim_matrix(embedding,embedding).detach()
dis = cosine_sim[~torch.eye(cosine_sim.shape[0], dtype=torch.bool)].reshape(cosine_sim.shape[0], -1).detach()
else:
cosine_sim = sim_matrix(embedding, embedding)
dis = cosine_sim[~torch.eye(cosine_sim.shape[0], dtype=torch.bool)].reshape(cosine_sim.shape[0], -1)
dis = dis / temp
cosine_sim = cosine_sim / temp
dis = torch.exp(dis)
cosine_sim = torch.exp(cosine_sim)
row_sum = []
for i in range(len(embedding)):
row_sum.append(sum(dis[i]))
contrastive_loss = 0
for i in range(len(embedding)):
n_i = label.tolist().count(label[i]) - 1
inner_sum = 0
for j in range(len(embedding)):
if label[i] == label[j] and i != j:
inner_sum = inner_sum + torch.log(cosine_sim[i][j] / row_sum[i])
if n_i != 0:
contrastive_loss += (inner_sum / (-n_i))
else:
contrastive_loss += 0
return contrastive_loss / scale