-
Notifications
You must be signed in to change notification settings - Fork 1
/
buckingham.h
381 lines (332 loc) · 12.8 KB
/
buckingham.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
/*
Copyright (C) 2010 The ESPResSo project
Copyright (C) 2002,2003,2004,2005,2006,2007,2008,2009,2010 Max-Planck-Institute for Polymer Research, Theory Group, PO Box 3148, 55021 Mainz, Germany
This file is part of ESPResSo.
ESPResSo is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
ESPResSo is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef BUCKINGHAM_H
#define BUCKINGHAM_H
/** \file buckingham.h
* Routines to calculate the Buckingham energy and/or force
* for a particle pair.
* \ref forces.c
*/
#ifdef BUCKINGHAM
MDINLINE int printbuckIAToResult(Tcl_Interp *interp, int i, int j)
{
char buffer[TCL_DOUBLE_SPACE];
IA_parameters *data = get_ia_param(i, j);
Tcl_PrintDouble(interp, data->BUCK_A, buffer);
Tcl_AppendResult(interp, "buckingham ", buffer, " ", (char *) NULL);
Tcl_PrintDouble(interp, data->BUCK_B, buffer);
Tcl_AppendResult(interp, buffer, " ", (char *) NULL);
Tcl_PrintDouble(interp, data->BUCK_C, buffer);
Tcl_AppendResult(interp, buffer, " ", (char *) NULL);
Tcl_PrintDouble(interp, data->BUCK_D, buffer);
Tcl_AppendResult(interp, buffer, " ", (char *) NULL);
Tcl_PrintDouble(interp, data->BUCK_cut, buffer);
Tcl_AppendResult(interp, buffer, " ", (char *) NULL);
Tcl_PrintDouble(interp, data->BUCK_discont, buffer);
Tcl_AppendResult(interp, buffer, " ", (char *) NULL);
Tcl_PrintDouble(interp, data->BUCK_shift, buffer);
Tcl_AppendResult(interp, buffer, " ", (char *) NULL);
Tcl_PrintDouble(interp, data->BUCK_capradius, buffer);
Tcl_AppendResult(interp, buffer, " ", (char *) NULL);
Tcl_PrintDouble(interp, data->BUCK_F1, buffer);
Tcl_AppendResult(interp, buffer, " ", (char *) NULL);
Tcl_PrintDouble(interp, data->BUCK_F2, buffer);
Tcl_AppendResult(interp, buffer, " ", (char *) NULL);
return TCL_OK;
}
MDINLINE int buckforcecap_set_params(double buckforcecap)
{
if (buck_force_cap != -1.0)
mpi_buck_cap_forces(buck_force_cap);
return TCL_OK;
}
/**Resultant Force due to a buckingham potential between two particles at interatomic separation r greater than or equal to discont*/
MDINLINE double buck_force_r(double A, double B, double C, double D, double r )
{
return (A*B*exp(-B*r) - 6.0*C/pow(r, 7) - 4.0*D/pow(r, 5));
}
/**Potential Energy due to a buckingham potential between two particles at interatomic separation r greater than or equal to discont*/
MDINLINE double buck_energy_r(double A, double B, double C, double D, double shift, double r )
{
return (A*exp(-B*r) - C/pow(r, 6) - D/pow(r, 4) + shift);
}
MDINLINE int buckingham_set_params(int part_type_a, int part_type_b,
double A, double B, double C, double D, double cut,
double discont, double shift, double cap_radius,
double F1, double F2)
{
IA_parameters *data, *data_sym;
make_particle_type_exist(part_type_a);
make_particle_type_exist(part_type_b);
data = get_ia_param(part_type_a, part_type_b);
data_sym = get_ia_param(part_type_b, part_type_a);
if (!data || !data_sym) {
return TCL_ERROR;
}
/* BUCKINGHAM should be symmetrical */
data->BUCK_A = data_sym->BUCK_A = A;
data->BUCK_B = data_sym->BUCK_B = B;
data->BUCK_C = data_sym->BUCK_C = C;
data->BUCK_D = data_sym->BUCK_D = D;
data->BUCK_cut = data_sym->BUCK_cut = cut;
data->BUCK_discont = data_sym->BUCK_discont = discont;
data->BUCK_shift = data_sym->BUCK_shift = shift;
if (cap_radius > 0.0) {
data->BUCK_capradius = cap_radius;
data_sym->BUCK_capradius = cap_radius;
}
/* Replace the buckingham potential for interatomic dist. less
than or equal to discontinuity by a straight line (F1+F2*r) */
F1 = buck_energy_r(A, B, C, D, shift, discont) +
discont*buck_force_r(A, B, C, D, discont);
F2 = -buck_force_r(A, B, C, D, discont);
data->BUCK_F1 = data_sym->BUCK_F1=F1;
data->BUCK_F2 = data_sym->BUCK_F2=F2;
/* broadcast interaction parameters */
mpi_bcast_ia_params(part_type_a, part_type_b);
mpi_bcast_ia_params(part_type_b, part_type_a);
if (buck_force_cap != -1.0)
mpi_buck_cap_forces(buck_force_cap);
return TCL_OK;
}
///parser for the forcecap
MDINLINE int inter_parse_buckforcecap(Tcl_Interp * interp, int argc, char ** argv)
{
char buffer[TCL_DOUBLE_SPACE];
if (argc == 0) {
if (buck_force_cap == -1.0)
Tcl_AppendResult(interp, "buckforcecap individual", (char *) NULL);
else {
Tcl_PrintDouble(interp, buck_force_cap, buffer);
Tcl_AppendResult(interp, "buckforcecap ", buffer, (char *) NULL);
}
return TCL_OK;
}
if (argc > 1) {
Tcl_AppendResult(interp, "inter buckforcecap takes at most 1 parameter",
(char *) NULL);
return TCL_ERROR;
}
if (ARG0_IS_S("individual"))
buck_force_cap = -1.0;
else if (! ARG0_IS_D(buck_force_cap) || buck_force_cap < 0) {
Tcl_ResetResult(interp);
Tcl_AppendResult(interp, "force cap must be a nonnegative double value or \"individual\"",
(char *) NULL);
return TCL_ERROR;
}
CHECK_VALUE(buckforcecap_set_params(buck_force_cap),
"If you can read this, you should change it. (Use the source Luke!)");
return TCL_ERROR;
}
MDINLINE int buckingham_parser(Tcl_Interp * interp,
int part_type_a, int part_type_b,
int argc, char ** argv)
{
/* parameters needed for buckingham */
double buck_A,buck_B,buck_C,buck_D,buck_cut,buck_discont,buck_shift,buck_cap_radius,F1,F2;
int change;
/* get buckingham interaction type */
if (argc < 8) {
Tcl_AppendResult(interp, "buckingham needs 7 parameters: "
"<buck_A> <buck_B> <buck_C> <buck_D> <buck_cut> <buck_discontinuity> <buck_shift> ",
(char *) NULL);
return TCL_ERROR;
}
/* copy buckingham parameters */
if ((! ARG_IS_D(1, buck_A)) ||
(! ARG_IS_D(2, buck_B)) ||
(! ARG_IS_D(3, buck_C)) ||
(! ARG_IS_D(4, buck_D)) ||
(! ARG_IS_D(5, buck_cut)) ||
(! ARG_IS_D(6, buck_discont)) ||
(! ARG_IS_D(7, buck_shift))) {
Tcl_AppendResult(interp, "buckingham needs 7 DOUBLE parameters: "
"<buck_A> <buck_B> <buck_C> <buck_D> <buck_cut> <buck_discontinuity> <buck_shift> ",
(char *) NULL);
return TCL_ERROR;
}
change = 8;
buck_cap_radius = -1.0;
F1 = 0.0;
F2 = 0.0;
/* check whether there are additional doubles, cap radius, F1 and F2*/
if (argc >= 9 && ARG_IS_D(8, buck_cap_radius))
{
change++;
if(argc >= 10 && ARG_IS_D(9, F1))
{
change++;
if(argc >= 11 && ARG_IS_D(10, F1))
change++;
}
}
else
Tcl_ResetResult(interp);
if(buck_discont>buck_cut)
{
Tcl_AppendResult(interp, "ERROR: <buck_cut> must be greater than <buck_discontinuity>",
(char *) NULL);
return TCL_ERROR;
}
if (buckingham_set_params(part_type_a, part_type_b,
buck_A, buck_B, buck_C, buck_D,
buck_cut, buck_discont, buck_shift,
buck_cap_radius, F1, F2) == TCL_ERROR) {
Tcl_AppendResult(interp, "particle types must be non-negative", (char *) NULL);
return 0;
}
return change;
}
/** Calculate Buckingham force between particle p1 and p2 and add
it to their force. */
MDINLINE void add_buck_pair_force(Particle *p1, Particle *p2, IA_parameters *ia_params,
double d[3], double dist, double force[3])
{
int j;
double fac;
if(dist < ia_params->BUCK_cut ) {
if(ia_params->BUCK_capradius==0.0)
{
/* case: resulting force/energy greater than discontinuity and
less than cutoff (true buckingham region) */
if(dist > ia_params->BUCK_discont) {
fac = buck_force_r(ia_params->BUCK_A, ia_params->BUCK_B, ia_params->BUCK_C, ia_params->BUCK_D, dist )/dist;
for(j=0;j<3;j++) {
force[j] += fac * d[j];
}
#ifdef LJ_WARN_WHEN_CLOSE
if(fac*dist > 1000) fprintf(stderr,"%d: BUCK-Warning: Pair (%d-%d) force=%f dist=%f\n",
this_node,p1->p.identity,p2->p.identity,fac*dist,dist);
#endif
}
else
{
/* resulting force/energy in the linear region*/
fac = -ia_params->BUCK_F2/dist;
for(j=0;j<3;j++) {
force[j] += fac * d[j];
}
}
}
/* if Buckingham potential is capped. */
else
{
if(dist>ia_params->BUCK_capradius) {
fac = buck_force_r(ia_params->BUCK_A, ia_params->BUCK_B, ia_params->BUCK_C, ia_params->BUCK_D, dist )/dist;
for(j=0;j<3;j++) {
force[j] += fac * d[j];
}
}
else
{
fac = buck_force_r(ia_params->BUCK_A, ia_params->BUCK_B, ia_params->BUCK_C, ia_params->BUCK_D, ia_params->BUCK_capradius)/dist;
for(j=0;j<3;j++) {
force[j] += fac * d[j];
}
}
}
ONEPART_TRACE(if(p1->p.identity==check_id) fprintf(stderr,"%d: OPT: BUCK f = (%.3e,%.3e,%.3e) with part id=%d at dist %f fac %.3e\n",this_node,p1->f.f[0],p1->f.f[1],p1->f.f[2],p2->p.identity,dist,fac));
ONEPART_TRACE(if(p2->p.identity==check_id) fprintf(stderr,"%d: OPT: BUCK f = (%.3e,%.3e,%.3e) with part id=%d at dist %f fac %.3e\n",this_node,p2->f.f[0],p2->f.f[1],p2->f.f[2],p1->p.identity,dist,fac));
BUCK_TRACE(fprintf(stderr,"%d: BUCK: Pair (%d-%d) dist=%.3f: force+-: (%.3e,%.3e,%.3e)\n",
this_node,p1->p.identity,p2->p.identity,dist,fac*d[0],fac*d[1],fac*d[2]));
}
}
/** calculate Buckingham energy between particle p1 and p2. */
MDINLINE double buck_pair_energy(Particle *p1, Particle *p2, IA_parameters *ia_params,
double d[3], double dist)
{
if(dist < ia_params->BUCK_cut) {
if(ia_params->BUCK_capradius==0.0)
{
/* case: resulting force/energy greater than discont and
less than cutoff (true buckingham region) */
if(dist > ia_params->BUCK_discont)
return buck_energy_r(ia_params->BUCK_A, ia_params->BUCK_B, ia_params->BUCK_C, ia_params->BUCK_D, ia_params->BUCK_shift, dist);
else
/* resulting force/energy in the linear region*/
return (ia_params->BUCK_F1+ia_params->BUCK_F2*dist);
}
else
{
if(dist>ia_params->BUCK_capradius)
/*true buckigham region*/
return buck_energy_r(ia_params->BUCK_A, ia_params->BUCK_B, ia_params->BUCK_C, ia_params->BUCK_D, ia_params->BUCK_shift, dist);
else
/*capped region*/
return buck_energy_r(ia_params->BUCK_A, ia_params->BUCK_B, ia_params->BUCK_C, ia_params->BUCK_D, ia_params->BUCK_shift, ia_params->BUCK_capradius);
}
}
return 0.0;
}
/** calculate buck_capradius from buckingham force cap */
MDINLINE void calc_buck_cap_radii(double force_cap)
{
int i,j,cnt=0;
IA_parameters *params = NULL;
double force=0.0, frac2, frac6, frac8;
double r0,r1 = 0.0,diff,exp_term,C_R,D_R;
for(i=0; i<n_particle_types; i++) {
for(j=0; j<n_particle_types; j++) {
params = get_ia_param(i,j);
if(force_cap>0.0 ) {
force = -params->BUCK_F2;
if (force_cap<force)
{
/* Solving numerically using Newton Raphson Technique */
force = 0.0;
cnt = 0;
r1 = (params->BUCK_cut+params->BUCK_discont)/2.0; //First guess value
r0 = 0.0 ;
while(fabs(r1 - r0)>1.0e-10) {
r0 = r1;
exp_term = params->BUCK_A*params->BUCK_B*exp(-params->BUCK_B*r0);
frac2 = SQR(r0);
frac6 = frac2*frac2*frac2;
frac8 = frac6*frac2;
C_R = 6.0*params->BUCK_C/frac8;
D_R = 4.0*params->BUCK_D/frac6;
diff = (exp_term - C_R*r0 - D_R*r0 - force_cap)/(-params->BUCK_B*exp_term + 7.0*C_R + 5.0*D_R);
r1 = r0 - diff;
if(r1>params->BUCK_discont)
r1=0.5*(params->BUCK_discont+r0);
cnt++;
if(cnt>500)
{
fprintf(stderr,"%d: [email protected]: Failed to converge while determining Buckingham cap radius!!",this_node);
fprintf(stderr,"%d: tolerance = %f",this_node, diff);
exit (0);
}
}
frac2 = SQR(r1);
frac6 = frac2*frac2*frac2;
force = params->BUCK_A*params->BUCK_B*exp(-params->BUCK_B*r1) - 6.0*params->BUCK_C/(r1*frac6) - 4.0*params->BUCK_D*r1/(frac6);
params->BUCK_capradius = r1;
}
else
params->BUCK_capradius = params->BUCK_discont;
}
else
params->BUCK_capradius = 0.0;
FORCE_TRACE(fprintf(stderr,"%d: Ptypes %d-%d have cap_radius %f and cap_force %f (iterations: %d)\n",
this_node,i,j,r1,force,cnt));
}
}
BUCK_TRACE(fprintf(stderr,"%d: BUCK: Buckingham force cap imposed %f, Calculated force %f and Cap radius %f after %d iterations\n",this_node,force_cap,force,params->BUCK_capradius,cnt);
);
}
#endif
#endif