-
Notifications
You must be signed in to change notification settings - Fork 446
/
Copy pathsave_historical_data_Roibal.py
312 lines (256 loc) · 10.3 KB
/
save_historical_data_Roibal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import time
import dateparser
import pytz
import json
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
import matplotlib.dates as mdates
import mpl_finance #import candlestick_ohlc
from datetime import datetime
from binance.client import Client
from BinanceKeys import BinanceKey1
api_key = BinanceKey1['api_key']
api_secret = BinanceKey1['api_secret']
client = Client(api_key, api_secret)
list_of_symbols = ['BTCUSDT', 'ETHUSDT', 'BNBUSDT','BNBBTC', 'ETHBTC', 'LTCBTC']
def run():
# get system status
#client.ping()
status = client.get_system_status()
print("\nExchange Status: ", status)
#Account Withdrawal History Info
withdraws = client.get_withdraw_history()
print("\nClient Withdraw History: ", withdraws)
#get Exchange Info
info = client.get_exchange_info()
print("\nExchange Info (Limits): ", info)
# place a test market buy order, to place an actual order use the create_order function
# if '1000 ms ahead of server time' error encountered, visit https://github.com/sammchardy/python-binance/issues/249
"""order = client.create_test_order(
symbol='BNBBTC',
side=Client.SIDE_BUY,
type=Client.ORDER_TYPE_MARKET,
quantity=100)"""
coin_prices(list_of_symbols)
coin_tickers(list_of_symbols)
for symbol in list_of_symbols:
market_depth(symbol)
#save_historic_klines_datafile("ETHBTC", "1 Dec, 2017", "1 Jan, 2018", Client.KLINE_INTERVAL_30MINUTE)
#save_historic_klines_datafile("BTCUSDT", "12 hours ago UTC", "Now UTC", Client.KLINE_INTERVAL_1MINUTE)
def market_depth(sym, num_entries=10):
#Get market depth
#Retrieve and format market depth (order book) including time-stamp
i=0 #Used as a counter for number of entries
print("Order Book: ", convert_time_binance(client.get_server_time()))
depth = client.get_order_book(symbol=sym)
print("\n", sym, "\nDepth ASKS:\n")
print("Price Amount")
for ask in depth['asks']:
if i<num_entries:
print(ask)
i+=1
j=0 #Secondary Counter for Bids
print("\n", sym, "\nDepth BIDS:\n")
print("Price Amount")
for bid in depth['bids']:
if j<num_entries:
print(bid)
j+=1
def coin_prices(watch_list):
#Will print to screen, prices of coins on 'watch list'
#returns all prices
prices = client.get_all_tickers()
print("\nSelected (watch list) Ticker Prices: ")
for price in prices:
if price['symbol'] in watch_list:
print(price)
return prices
def coin_tickers(watch_list):
# Prints to screen tickers for 'watch list' coins
# Returns list of all price tickers
tickers = client.get_orderbook_tickers()
print("\nWatch List Order Tickers: \n")
for tick in tickers:
if tick['symbol'] in watch_list:
print(tick)
return tickers
def date_to_milliseconds(date_str):
"""Convert UTC date to milliseconds
If using offset strings add "UTC" to date string e.g. "now UTC", "11 hours ago UTC"
See dateparse docs for formats http://dateparser.readthedocs.io/en/latest/
:param date_str: date in readable format, i.e. "January 01, 2018", "11 hours ago UTC", "now UTC"
:type date_str: str
"""
# get epoch value in UTC
epoch = datetime.utcfromtimestamp(0).replace(tzinfo=pytz.utc)
# parse our date string
d = dateparser.parse(date_str)
# if the date is not timezone aware apply UTC timezone
if d.tzinfo is None or d.tzinfo.utcoffset(d) is None:
d = d.replace(tzinfo=pytz.utc)
# return the difference in time
return int((d - epoch).total_seconds() * 1000.0)
def interval_to_milliseconds(interval):
"""Convert a Binance interval string to milliseconds
:param interval: Binance interval string 1m, 3m, 5m, 15m, 30m, 1h, 2h, 4h, 6h, 8h, 12h, 1d, 3d, 1w
:type interval: str
:return:
None if unit not one of m, h, d or w
None if string not in correct format
int value of interval in milliseconds
"""
ms = None
seconds_per_unit = {
"m": 60,
"h": 60 * 60,
"d": 24 * 60 * 60,
"w": 7 * 24 * 60 * 60
}
unit = interval[-1]
if unit in seconds_per_unit:
try:
ms = int(interval[:-1]) * seconds_per_unit[unit] * 1000
except ValueError:
pass
return ms
def convert_time_binance(gt):
#Converts from Binance Time Format (milliseconds) to time-struct
#gt = client.get_server_time()
print("Binance Time: ", gt)
print(time.localtime())
aa = str(gt)
bb = aa.replace("{'serverTime': ","")
aa = bb.replace("}","")
gg=int(aa)
ff=gg-10799260
uu=ff/1000
yy=int(uu)
tt=time.localtime(yy)
#print(tt)
return tt
def get_historical_klines(symbol, interval, start_str, end_str=None):
"""Get Historical Klines from Binance
See dateparse docs for valid start and end string formats http://dateparser.readthedocs.io/en/latest/
If using offset strings for dates add "UTC" to date string e.g. "now UTC", "11 hours ago UTC"
:param symbol: Name of symbol pair e.g BNBBTC
:type symbol: str
:param interval: Biannce Kline interval
:type interval: str
:param start_str: Start date string in UTC format
:type start_str: str
:param end_str: optional - end date string in UTC format
:type end_str: str
:return: list of OHLCV values
"""
# create the Binance client, no need for api key
client = Client("", "")
# init our list
output_data = []
# setup the max limit
limit = 500
# convert interval to useful value in seconds
timeframe = interval_to_milliseconds(interval)
# convert our date strings to milliseconds
start_ts = date_to_milliseconds(start_str)
# if an end time was passed convert it
end_ts = None
if end_str:
end_ts = date_to_milliseconds(end_str)
idx = 0
# it can be difficult to know when a symbol was listed on Binance so allow start time to be before list date
symbol_existed = False
while True:
# fetch the klines from start_ts up to max 500 entries or the end_ts if set
temp_data = client.get_klines(
symbol=symbol,
interval=interval,
limit=limit,
startTime=start_ts,
endTime=end_ts
)
# handle the case where our start date is before the symbol pair listed on Binance
if not symbol_existed and len(temp_data):
symbol_existed = True
if symbol_existed:
# append this loops data to our output data
output_data += temp_data
# update our start timestamp using the last value in the array and add the interval timeframe
start_ts = temp_data[len(temp_data) - 1][0] + timeframe
else:
# it wasn't listed yet, increment our start date
start_ts += timeframe
idx += 1
# check if we received less than the required limit and exit the loop
if len(temp_data) < limit:
# exit the while loop
break
# sleep after every 3rd call to be kind to the API
if idx % 3 == 0:
time.sleep(1)
return output_data
def save_historic_klines_csv(symbol, start, end, interval):
klines = get_historical_klines(symbol, interval, start, end)
ochl = []
list_of_open = []
three_period_moving_ave = []
time3=[]
five_period_moving_ave = []
ten_period_moving_ave = []
time10=[]
with open('Binance_{}_{}-{}.txt'.format(symbol, start, end), 'w') as f:
f.write('Time, Open, High, Low, Close, Volume\n')
for kline in klines:
#print(kline)
time1 = int(kline[0])
open1 = float(kline[1])
Low = float(kline[2])
High = float(kline[3])
Close = float(kline[4])
Volume = float(kline[5])
format_kline = "{}, {}, {}, {}, {}, {}\n".format(time1, open1, High, Low, Close, Volume) #Thanks to user Apneef for correction
ochl.append([time1, open1, Close, High, Low, Volume])
f.write(format_kline)
#track opening prices, use for calculating moving averages
list_of_open.append(open1)
#Calculate three 'period' moving average - Based on Candlestick duration
if len(list_of_open)>2:
price3=0
for pri in list_of_open[-3:]:
price3+=pri
three_period_moving_ave.append(float(price3/3))
time3.append(time1)
#Perform Moving Average Calculation for 10 periods
if len(list_of_open)>9:
price10=0
for pri in list_of_open[-10:]:
price10+=pri
ten_period_moving_ave.append(float(price10/10))
time10.append(time1)
#Matplotlib visualization how-to from: https://pythonprogramming.net/candlestick-ohlc-graph-matplotlib-tutorial/
fig, ax = plt.subplots()
mpl_finance.candlestick_ochl(ax, ochl, width=1)
plt.plot(time3, three_period_moving_ave, color='green', label='3 Period MA - Open')
plt.plot(time10, ten_period_moving_ave, color='blue', label='10 Period MA - Open')
#ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d-%h-%m')) #Converting to date format not working
ax.set(xlabel='Date', ylabel='Price', title='{} {}-{}'.format(symbol, start, end))
plt.legend()
plt.show()
def save_historic_klines_datafile(symbol, start, end, interval):
#Collects kline historical data , output and saves to file
klines = get_historical_klines(symbol, interval, start, end)
# open a file with filename including symbol, interval and start and end converted to milliseconds
with open(
"Binance_{}_{}_{}-{}_{}-{}.json".format(
symbol,
interval,
start,
end,
date_to_milliseconds(start),
date_to_milliseconds(end)
),
'w' # set file write mode
) as f:
f.write(json.dumps(klines))
if __name__ == "__main__":
run()