-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.Rmd
236 lines (165 loc) · 6.21 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
---
title: "CSL-Tox"
output: github_document
self_contained: true
---
```{r include =FALSE}
knitr::opts_chunk$set( message = FALSE, echo = TRUE, warning = FALSE)
```
This tutorial contains the necessary scripts and data to reproduce the work explained in the paper "CSL-Tox: An open-source analytical framework for the comparison of short-term and long-term toxicity end points and exploring the opportunities for decreasing in-vivo studies conducted for drug development programs."
#### Naga D and Dimitrakopoulou S et al.
#### An overview of the steps performed and implemented in the CSL-Tox workflow.
![](image.png)
## 1- Data refinement
- Uploading necessary libraries and scripts
```{r uploadpack}
library(tidyverse)
library(purrr)
#importing scripts containing functions for reading the data and transform the dataset
source("ReadingData.R")
source("ChangeDataset.R")
options(knitr.kable.NA = '')
```
- Assigning the file names. The main and pathology datasets are provided in the Data folder: Tables S3 and S4 respectively.
```{r}
MainData_file="Data/S3.txt"
PathologyData_file="Data/S4.txt"
```
- Reading the data
```{r}
Data=ReadingData(MainData_file,PathologyData_file)
```
- Refining the dataset:
(a) Grouping all species into rodents & non rodents
(b) Apply controled terminology
(c) Group findings into the six high level defined categories described in the paper :
| High level categories |
|------------------------|
| body_weight |
| body_weight_gain |
| git_clinical_signs |
| other_clinical_signs |
| macroscopic |
| pathology |
| organ_weight |
| cardiovascular_effects |
```{r}
Data=ChangeData(Data)
```
## 2- Data exploration
- Viewing the data
```{r}
knitr::kable(head(Data$MainData))
knitr::kable(summary(Data))
```
- Plotting an overview of the data:
```{r}
#importing the script containing the functions
source("DataExploratoryPlots.R")
```
```{r}
Therapeutic_Areas.fn(Data$MainData)
```
```{r}
Different_Species.fn(Data$MainData)
```
```{r}
Dist.St.fn(Data$MainData)
```
```{r}
StudiesPerFindingCat(Data$MainData)
```
```{r}
Dist.St.fn(Data$MainData)
```
## 3- Data analysis
This section reproduces the main results included in the paper: Overall adversity of molecules, NOAEL changes and likelihood ratios.
- Calculation of the "Appearance" dataframe : Table containing the drug,modality,species, findings and whether those findings were observed "1" or not observed "0" in short, middle and long studies
```{r}
#importing the script containing the functions
source("Appearance_Functions.R")
Appearance=map_dfr(.x =unique(Data$MainData$identifier),.f = Appear_Drug, Data)
```
```{r}
#Viewing the head of the appearance table
knitr::kable(head(Appearance))
```
- Refining the appearance dataframe: Grouping short and middle study together
```{r}
Summarised.Appearance = Cond.Appearance.fn(Appearance)
#head of summarized appearance table
knitr::kable(head(Summarised.Appearance))
```
Note: The finding coloumn in the summarized appearance table contains the high level terms, for more detailed findings the following function can be used:
```{r}
Summarised.Appearance.detailed = Cond.Appearance.ext.fn(Appearance)
knitr::kable(head(Summarised.Appearance.detailed))
```
- Repeating previous analysis but for adverse events only
```{r}
Adverse.Data=AdverseData.fn(Data)
Adverse.Appearance=map_dfr(.x =unique(Adverse.Data$MainData$identifier),.f = Appear_Drug, Adverse.Data)
Summarised.Adverse.Appearance=Cond.Appearance.fn(Adverse.Appearance)
```
#### (i) Calculation of the overall adversity per modality
- For SM
```{r}
adversity_sm = Adversity.Summary.fn(Summarised.Adverse.Appearance, type="sm")
knitr::kable(adversity_sm, caption = "Adversity summary for small molecules")
```
- For LM
```{r}
adversity_lm = Adversity.Summary.fn(Summarised.Adverse.Appearance, type="lm")
knitr::kable(adversity_lm, caption = "Adversity summary for large molecules")
```
#### (ii) Calculation of the NOAEL changes from short to long-term studies
```{r}
#importing the script containing the functions
source("NOAEL_Change.R")
#table with results for sm
knitr::kable(result_sm, caption = "Noael changes for small molecules")
```
```{r}
#table with results for lm
knitr::kable(result_lm,caption = "Noael changes for large molecules")
```
#### (iii) Calculation of the Likelihood ratios
```{r}
#importing the script containing the functions
source("LikelihoodRatio.R")
```
- Calculate contingency tables and likelihood ratios for all findings
Specify rodent or non-rodent:
```{r}
animal = "rodent"
Likelihood.Ratio=Likelihood.Ratio.fn(Summarised.Appearance %>% filter(species== animal))
```
- Round values and select only significant likelihood ratios with p-values \< 0.05
```{r}
Likelihood.Ratio[,-1]=round(Likelihood.Ratio[,-1],2)
#Likelihood ratios with p.value<0.05
Likelihood.Ratio.imp=Likelihood.Ratio %>% filter(p_value<=0.05) %>%
arrange(desc(LR_pos), desc(iLR_neg)) %>% select(-c(Sensitivity,Specificity))
knitr::kable(Likelihood.Ratio.imp,caption = "Significant Likelihood ratios for rodents for all findings")
```
- Plot frequency of fp and fn across the findings in rodent and non-rodent
```{r}
Appear_plot(dataf = Likelihood.Ratio.imp ,species = "rodent", legend_pos=c(0.90,0.90))
```
- Calculate contingency tables and likelihood ratios for adverse findings only (using the adverse appearance table this time)
```{r}
Adverse.Likelihood.Ratio=Likelihood.Ratio.fn(Summarised.Adverse.Appearance %>% filter(species== animal))
```
- Round values and select only significant likelihood ratios with p-values \< 0.05
```{r}
Adverse.Likelihood.Ratio[,-1]=round(Adverse.Likelihood.Ratio[,-1],2)
#Likelihood ratios with p.value<0.05
Adverse.Likelihood.Ratio.imp=Adverse.Likelihood.Ratio %>% filter(p_value<=0.05) %>%
arrange(desc(LR_pos), desc(iLR_neg)) %>% select(-c(Sensitivity,Specificity))
knitr::kable(Adverse.Likelihood.Ratio,caption = "Significant Likelihood ratios for rodents for adverse findings in rodents")
```
- Plot frequency of fp and fn across the adverse findings
```{r}
Appear_plot(dataf = Adverse.Likelihood.Ratio.imp ,species = "rodent", legend_pos=c(0.90,0.90))
```
The previous steps are repeated to generate the results for the non-rodent species.