-
Notifications
You must be signed in to change notification settings - Fork 1
/
cnn_functions.py
874 lines (713 loc) · 33.7 KB
/
cnn_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
"""
Main code used for evaluating DeepLC
"""
__author__ = ["Robbin Bouwmeester", "Ralf Gabriels"]
__credits__ = ["Robbin Bouwmeester", "Ralf Gabriels", "Prof. Lennart Martens", "Sven Degroeve"]
__license__ = "Apache License, Version 2.0"
__maintainer__ = ["Robbin Bouwmeester", "Ralf Gabriels"]
__email__ = ["[email protected]", "[email protected]"]
import numpy as np
import pandas as pd
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
import random
import os
import math
import time
from joblib import Parallel, delayed
import multiprocessing
import itertools
from sklearn.preprocessing import OneHotEncoder
from sklearn.metrics import roc_auc_score
from sklearn.metrics import confusion_matrix
import tensorflow as tf
from tensorflow.keras.utils import plot_model
from tensorflow.keras.layers import Conv1D, Dense, MaxPooling1D, AveragePooling1D, Flatten, Dropout, GlobalMaxPooling1D, GlobalAveragePooling1D
from tensorflow.keras.layers import concatenate
from tensorflow.keras.layers import Flatten
from tensorflow.keras.layers import Input
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.layers import LeakyReLU
from tensorflow.keras.layers import Masking
from tensorflow.keras.layers import Bidirectional
from tensorflow.keras.layers import LSTM
from tensorflow.keras import regularizers
from tensorflow.keras.regularizers import l2
from tensorflow.keras.regularizers import l1
from tensorflow.keras.models import Model
from tensorflow.keras.models import Sequential
from tensorflow.keras.callbacks import ModelCheckpoint
from tensorflow.keras.models import load_model
from tensorflow.keras import initializers
from deeplc.feat_extractor import FeatExtractor
from deeplc import DeepLC
#import xgboost as xgb
from tensorflow.keras.layers import BatchNormalization
import scipy
import tensorflow as tf
from sklearn.metrics import roc_auc_score
from tensorflow.keras.optimizers import Adam
from multiprocessing import Pool
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
def read_infile(infile_loc):
df = pd.read_csv(infile_loc,
sep=",",
low_memory=False,
dtype={"seq" : "str",
"modifications" : "str",
"tr" : "float32"})
df.index = ["Pep_"+str(ide) for ide in df.index]
min_tr = df["tr"].min()
if min_tr < 0: df["tr"] = df["tr"]+abs(min_tr)
df["modifications"].fillna("",inplace=True)
return df
def read_infile_new(infile_loc):
p = 0.0075
df = pd.read_csv(infile_loc,
sep=",",
low_memory=False,
dtype={"seq" : "str",
"modifications" : "str",
"tr" : "float32",
"first" : "float32",
"seq2" : "str",
"modifications2" : "str",
},
skiprows=lambda i: i>0 and random.random() > p)
df.index = ["Pep_"+str(ide) for ide in df.index]
#min_tr = df["tr"].min()
#if min_tr < 0: df["tr"] = df["tr"]+abs(min_tr)
df["modifications"].fillna("",inplace=True)
return df
def read_aa_lib(infile,reset_to_glycine=""):
aa_comp_pd_dict = pd.read_csv(infile,index_col=0).T.to_dict()
aa_comp = {}
for aa,v1 in aa_comp_pd_dict.items():
aa_comp[aa] = {}
for atom,v2 in aa_comp_pd_dict[aa].items():
if v2 != 0:
aa_comp[aa][atom] = v2
if aa == reset_to_glycine:
aa_comp[aa] = aa_comp_pd_dict["G"]
aa_comp["X"] = {'C': 0}
return aa_comp
def chunks(l, n):
for i in range(0, len(l), n):
yield l[i:i + n]
def calc_feats_mods(formula):
"""
Chemical formula to atom addition/subtraction
Parameters
----------
formula : str
chemical formula
Returns
-------
list
atom naming
list
number of atom added/subtracted
"""
if not formula:
return [],[]
if len(str(formula)) == 0:
return [],[]
if type(formula) != str:
if math.isnan(formula):
return [],[]
new_atoms = []
new_num_atoms = []
for atom in formula.split(" "):
if "(" not in atom:
atom_symbol = atom
num_atom = 1
else:
atom_symbol = atom.split("(")[0]
num_atom = atom.split("(")[1].rstrip(")")
new_atoms.append(atom_symbol)
new_num_atoms.append(num_atom)
return new_atoms,map(int,new_num_atoms)
def get_libs_mods(directory):
"""
Make a dictionary with unimod to chemical formula
Parameters
----------
directory : str
directory of the unimod to chemical formula mapping
Returns
-------
dict
chemical formula of a PTM when it is added
dict
chemical formula of a PTM when it is subtracted
"""
# TODO replace dir with actual file...
mod_df = pd.read_csv(os.path.join(directory,"unimod_to_formula.csv"),index_col=0)
mod_dict = mod_df.to_dict()
return mod_dict["formula_pos"],mod_dict["formula_neg"]
def encode_atoms(seqs_df,
padding_length=60,
aa_comp={},
positions=set([0,1,2,3,-1,-2,-3,-4]),
sum_mods=2,
ignore_mods=False,
dict_index_pos={'C' : 0,
'H' : 1,
'N' : 2,
'O' : 3,
'S' : 4,
'P' : 5},
dict_index_all={'C' : 0,
'H' : 1,
'N' : 2,
'O' : 3,
'S' : 4,
'P' : 5},
dict_index={'C' : 0,
'H' : 1,
'N' : 2,
'O' : 3,
'S' : 4,
'P' : 5}):
ret_list = {}
ret_list_sum = {}
ret_list_all = {}
ret_list_pos = {}
seqs = seqs_df["seq"]
indexes = seqs_df.index
mods_all = seqs_df["modifications"]
for row_index,seq,mods in zip(indexes,seqs,mods_all):
seq_len = len(seq)
if seq_len > padding_length: continue
padding = "".join(["X"]*(padding_length-len(seq)))
seq = seq+padding
matrix = np.zeros((len(seq),len(dict_index.keys())),dtype=np.float16)
matrix_sum = np.zeros((int(len(seq)/sum_mods),len(dict_index.keys())),dtype=np.float32)
matrix_all = np.zeros(len(dict_index_all.keys())+1,dtype=np.float32)
matrix_pos = np.zeros((len(positions),len(dict_index.keys())),dtype=np.float16)
matrix_all[len(dict_index_all.keys())] = len(seq)
for index,aa in enumerate(seq):
if aa == "X": break
index_sum = int(index/sum_mods)
for atom,val in aa_comp[aa].items():
matrix[index,dict_index[atom]] = val
matrix_sum[index_sum,dict_index[atom]] += val
matrix_all[dict_index_all[atom]] += val
if index in positions:
matrix_pos[index,dict_index_pos[atom]] = val
elif index-seq_len in positions:
matrix_pos[index-seq_len,dict_index_pos[atom]] = val
if len(mods) == 0:
ret_list[row_index] = {"index_name":row_index,"matrix":matrix}
ret_list_sum[row_index] = {"index_name":row_index,"matrix_sum":matrix_sum}
ret_list_all[row_index] = {"index_name":row_index,"matrix_all":matrix_all}
ret_list_pos[row_index] = {"index_name":row_index,"pos_matrix":matrix_pos.flatten()}
continue
#mods = row["modifications"].split("|")
lib_add,lib_subtract = get_libs_mods(os.path.join(os.getcwd(),"unimod/"))
mods = mods.split("|")
for i in range(1,len(mods),2):
if ignore_mods:
continue
mod = mods[i]
try:
fill_mods,fill_num = calc_feats_mods(lib_add[mod])
except:
continue
subtract_mods,subtract_num = calc_feats_mods(lib_subtract[mod])
loc = int(mods[i-1])-1
if loc > len(seq):
loc = len(seq)-1
for atom,atom_change in zip(fill_mods,fill_num):
try:
matrix[loc,dict_index[atom]] += atom_change
matrix_all[dict_index_all[atom]] += val
if loc in positions:
matrix_pos[loc,dict_index_pos[atom]] += val
elif loc-len(seq) in positions:
matrix_pos[loc-len(seq),dict_index_pos[atom]] += val
except KeyError:
pass
except IndexError:
print("Index does not exist for: ",atom,atom_change,ident,mod,seq)
for atom,atom_change in zip(subtract_mods,subtract_num):
try:
matrix[loc,dict_index[atom]] -= atom_change
matrix_all[dict_index_all[atom]] -= val
if loc in positions:
matrix_pos[loc,dict_index_pos[atom]] -= val
elif loc-len(seq) in positions:
matrix_pos[loc-len(seq),dict_index_pos[atom]] -= val
except KeyError:
pass
except IndexError:
print("Index does not exist for: ",atom,atom_change,ident,mod,seq)
ret_list[row_index] = {"index_name":row_index,"matrix":matrix}
ret_list_sum[row_index] = {"index_name":row_index,"matrix_sum":matrix_sum}
ret_list_all[row_index] = {"index_name":row_index,"matrix_all":matrix_all}
ret_list_pos[row_index] = {"index_name":row_index,"pos_matrix":matrix_pos.flatten()}
return pd.DataFrame.from_dict(ret_list).T, pd.DataFrame.from_dict(ret_list_sum).T, pd.DataFrame.from_dict(ret_list_pos).T, pd.DataFrame.from_dict(ret_list_all).T
def count_aa(df,
aas = ['A','C','D','E','F','G','H','I','K','L','M','N','P','Q','R','S','T','V','W','Y']):
ret_list = {}
seqs = df["seq"]
indexes = df.index
for s,i in zip(seqs,indexes):
ret_list[i] = {}
for aa in s:
ret_list[i][aa] = int(s.count(aa))
return pd.DataFrame(ret_list).T
def add_count_aa(df):
df_aa = count_aa(df).fillna(0)
def get_feat_df(df,aa_comp={},costum_modification_file=None,num_cores=False,ignore_mods=False,standard_feat = False):
if not num_cores: num_cores = multiprocessing.cpu_count()
num_cores = 1
if costum_modification_file:
if type(costum_modification_file) == list:
costum_modification_file = costum_modification_file[0]
if costum_modification_file.endswith(".csv"):
costum_modification_file = os.path.dirname(os.path.abspath(costum_modification_file))
f_extractor = FeatExtractor(add_sum_feat=False,
ptm_add_feat=False,
ptm_subtract_feat=False,
#standard_feat = False,
chem_descr_feat = False,
add_comp_feat = False,
cnn_feats = True,
verbose = True,
lib_path_mod=costum_modification_file,
ignore_mods = ignore_mods)
else:
f_extractor = FeatExtractor(add_sum_feat=False,
ptm_add_feat=False,
ptm_subtract_feat=False,
#standard_feat = False,
chem_descr_feat = False,
add_comp_feat = False,
cnn_feats = True,
verbose = True,
ignore_mods = ignore_mods)
pepper = DeepLC(
f_extractor=f_extractor,
cnn_model=True,
n_jobs=num_cores,
verbose=True)
df_feat = pepper.do_f_extraction_pd_parallel(df)
df = pd.concat([df,df_feat],axis=1)
return df
def split_seq(a,
n):
"""
Split a list (a) into multiple chunks (n)
Parameters
----------
a : list
list to split
n : list
number of chunks
Returns
-------
list
chunked list
"""
# since chunking is not alway possible do the modulo of residues
k, m = divmod(len(a), n)
return(a[i * k + min(i, m):(i + 1) * k + min(i + 1, m)] for i in range(n))
def cal_tr(uncal_preds,
calibrate_dict,
calibrate_min,
calibrate_max,
bin_dist=1):
cal_preds = []
for uncal_pred in uncal_preds:
try:
slope,intercept,x_correction = calibrate_dict[str(round(uncal_pred,bin_dist))]
cal_preds.append(slope * (uncal_pred-x_correction) + intercept)
except KeyError:
# outside of the prediction range ... use the last calibration curve
if uncal_pred <= calibrate_min:
slope,intercept,x_correction = calibrate_dict[str(round(calibrate_min,bin_dist))]
cal_preds.append(slope * (uncal_pred-x_correction) + intercept)
elif uncal_pred >= calibrate_max:
slope,intercept,x_correction = calibrate_dict[str(round(calibrate_max,bin_dist))]
cal_preds.append(slope * (uncal_pred-x_correction) + intercept)
else:
slope,intercept,x_correction = calibrate_dict[str(round(calibrate_max,bin_dist))]
cal_preds.append(slope * (uncal_pred-x_correction) + intercept)
return cal_preds
def calibrate_preds(tr_main,
tr_sub,
use_median=True,
bin_dist=1,
dict_cal_divider=100,
split_cal=25,
verbose=True):
"""
Make calibration curve for predictions TODO make similar function for pd.DataFrame
Parameters
----------
seqs : list
peptide sequence list; should correspond to mods and identifiers
mods : list
naming of the mods; should correspond to seqs and identifiers
identifiers : list
identifiers of the peptides; should correspond to seqs and mods
measured_tr : list
measured tr of the peptides; should correspond to seqs, identifiers, and mods
Returns
-------
"""
calibrate_min = float('inf')
calibrate_max = 0
calibrate_dict = {}
if verbose: t0 = time.time()
# sort two lists, predicted and observed based on measured tr
tr_sort = [(mtr,ptr) for mtr,ptr in sorted(zip(tr_main,tr_sub), key=lambda pair: pair[0])]
tr_main = [mtr for mtr,ptr in tr_sort]
tr_sub = [ptr for mtr,ptr in tr_sort]
mtr_mean = []
ptr_mean = []
# smooth between observed and predicted
for mtr,ptr in zip(split_seq(tr_main,split_cal),split_seq(tr_sub,split_cal)):
if not use_median:
mtr_mean.append(sum(mtr)/len(mtr))
ptr_mean.append(sum(ptr)/len(ptr))
else:
mtr_mean.append(np.median(mtr))
ptr_mean.append(np.median(ptr))
# calculate calibration curves
for i in range(0,len(ptr_mean)):
if i >= len(ptr_mean)-1: continue
delta_ptr = ptr_mean[i+1]-ptr_mean[i]
delta_mtr = mtr_mean[i+1]-mtr_mean[i]
slope = delta_mtr/delta_ptr
intercept = mtr_mean[i]
x_correction = ptr_mean[i]
# optimized predictions using a dict to find calibration curve very fast
for v in np.arange(round(ptr_mean[i],bin_dist),round(ptr_mean[i+1],bin_dist),1/((bin_dist)*dict_cal_divider)):
if v < calibrate_min:
calibrate_min = v
if v > calibrate_max:
calibrate_max = v
calibrate_dict[str(round(v,1))] = [slope,intercept,x_correction]
if verbose: print("Time to calibrate: %s seconds" % (time.time() - t0))
return calibrate_dict, calibrate_min, calibrate_max
def init_model(X_train,
X_train_sum,
X_train_global,
X_bidirect,
a_blocks=3,
a_kernel=5,
a_max_pool=2,
a_filters_start=256,
a_stride=1,
b_blocks=3,
b_kernel=5,
b_max_pool=2,
b_filters_start=256,
b_stride=1,
global_neurons=64,
global_num_dens=4,
regularizer_val=0.000005,
num_gpus=1,
verbose=True,
fit_hc=False):
strategy = tf.distribute.MirroredStrategy(cross_device_ops=tf.distribute.HierarchicalCopyAllReduce())
lrelu = lambda x: tf.keras.activations.relu(x, alpha=0.1, max_value=20.0)
with strategy.scope():
random.seed(42)
initi = "RandomNormal"
input_cnn = Input(shape=(X_train.shape[1],X_train.shape[2]))
a = input_cnn
for num_blocks in range(1,a_blocks+1):
a = Conv1D(filters=int(a_filters_start/(2**(num_blocks-1))), kernel_size=a_kernel, strides=a_stride, activation=lrelu, kernel_regularizer=regularizers.l1(regularizer_val), kernel_initializer=initi, padding="same")(a)
a = Conv1D(filters=int(a_filters_start/(2**(num_blocks-1))), kernel_size=a_kernel, strides=a_stride, activation=lrelu, kernel_regularizer=regularizers.l1(regularizer_val), kernel_initializer=initi, padding="same")(a)
if num_blocks < a_blocks: a = MaxPooling1D(pool_size=a_max_pool)(a)
a = Flatten()(a)
a = Model(inputs=input_cnn, outputs=a)
input_cnn_sum = Input(shape=(X_train_sum.shape[1],X_train_sum.shape[2]))
b = input_cnn_sum
for num_blocks in range(1,b_blocks+1):
b = Conv1D(filters=int(b_filters_start/(2**(num_blocks-1))), kernel_size=b_kernel, strides=b_stride, activation=lrelu, kernel_regularizer=regularizers.l1(regularizer_val), kernel_initializer=initi, padding="same")(b)
b = Conv1D(filters=int(b_filters_start/(2**(num_blocks-1))), kernel_size=b_kernel, strides=b_stride, activation=lrelu, kernel_regularizer=regularizers.l1(regularizer_val), kernel_initializer=initi, padding="same")(b)
if num_blocks < b_blocks: b = MaxPooling1D(pool_size=2)(b)
b = Flatten()(b)
b = Model(inputs=input_cnn_sum, outputs=b)
input_global = Input(shape=(X_train_global.shape[1],))
c = input_global
for num_dens in range(1,global_num_dens+1):
c = Dense(global_neurons, activation=lrelu, kernel_regularizer=regularizers.l1(regularizer_val), kernel_initializer=initi)(c)
c = Model(inputs=input_global, outputs=c)
if fit_hc:
input_bidirect = Input(shape=(X_bidirect.shape[1],X_bidirect.shape[2]))
e = Conv1D(filters=2, kernel_size=2, strides=1, activation='tanh', kernel_regularizer=None, kernel_initializer=initi, padding="same")(input_bidirect)
e = Conv1D(filters=2, kernel_size=2, strides=1, activation='tanh', kernel_regularizer=None, kernel_initializer=initi, padding="same")(e)
e = MaxPooling1D(pool_size=10)(e)
e = Flatten()(e)
e = Model(inputs=input_bidirect, outputs=e)
if fit_hc: combined = concatenate([a.output, b.output, c.output, e.output],axis=-1)
else: combined = concatenate([a.output, b.output, c.output],axis=-1)
d = Dense(128, activation=lrelu, kernel_regularizer=None, kernel_initializer=initi)(combined) #l2(0.001)
d = Dense(128, activation=lrelu, kernel_regularizer=None, kernel_initializer=initi)(d)
d = Dense(128, activation=lrelu, kernel_regularizer=None, kernel_initializer=initi)(d)
d = Dense(128, activation=lrelu, kernel_regularizer=None, kernel_initializer=initi)(d)
d = Dense(128, activation=lrelu, kernel_regularizer=None, kernel_initializer=initi)(d)
d = Dense(1, kernel_regularizer=None, kernel_initializer=initi)(d)
if fit_hc: model = Model(inputs=[a.input, b.input, c.input, e.input], outputs=d)
else: model = Model(inputs=[a.input, b.input, c.input], outputs=d)
parallel_model = model
parallel_model.compile(loss='mean_absolute_error',
optimizer= 'Adam',
metrics=['mean_absolute_error'])
if verbose: print(parallel_model.summary())
return parallel_model
def init_model_new(X_train,
X_train_sum,
X_train_global,
X_bidirect,
a_blocks=3,
a_kernel=5,
a_max_pool=2,
a_filters_start=256,
a_stride=1,
b_blocks=3,
b_kernel=5,
b_max_pool=2,
b_filters_start=256,
b_stride=1,
global_neurons=64,
global_num_dens=4,
regularizer_val=0.000005,
num_gpus=1,
verbose=True,
fit_hc=False):
strategy = tf.distribute.MirroredStrategy(cross_device_ops=tf.distribute.HierarchicalCopyAllReduce())
lrelu = lambda x: tf.keras.activations.relu(x, alpha=0.1, max_value=20.0)
with strategy.scope():
random.seed(42)
initi = "RandomNormal"
input_cnn = Input(shape=(X_train.shape[1],X_train.shape[2]))
a = input_cnn
for num_blocks in range(1,a_blocks+1):
a = Conv1D(filters=int(a_filters_start/(2**(num_blocks-1))), kernel_size=a_kernel, strides=a_stride, activation=lrelu, kernel_regularizer=regularizers.l1(regularizer_val), kernel_initializer=initi, padding="same")(a)
a = Conv1D(filters=int(a_filters_start/(2**(num_blocks-1))), kernel_size=a_kernel, strides=a_stride, activation=lrelu, kernel_regularizer=regularizers.l1(regularizer_val), kernel_initializer=initi, padding="same")(a)
if num_blocks < a_blocks: a = MaxPooling1D(pool_size=a_max_pool)(a)
a = Flatten()(a)
a = Model(inputs=input_cnn, outputs=a)
input_cnn_sum = Input(shape=(X_train_sum.shape[1],X_train_sum.shape[2]))
b = input_cnn_sum
for num_blocks in range(1,b_blocks+1):
b = Conv1D(filters=int(b_filters_start/(2**(num_blocks-1))), kernel_size=b_kernel, strides=b_stride, activation=lrelu, kernel_regularizer=regularizers.l1(regularizer_val), kernel_initializer=initi, padding="same")(b)
b = Conv1D(filters=int(b_filters_start/(2**(num_blocks-1))), kernel_size=b_kernel, strides=b_stride, activation=lrelu, kernel_regularizer=regularizers.l1(regularizer_val), kernel_initializer=initi, padding="same")(b)
if num_blocks < b_blocks: b = MaxPooling1D(pool_size=2)(b)
b = Flatten()(b)
b = Model(inputs=input_cnn_sum, outputs=b)
input_global = Input(shape=(X_train_global.shape[1],))
c = input_global
for num_dens in range(1,global_num_dens+1):
c = Dense(global_neurons, activation=lrelu, kernel_regularizer=regularizers.l1(regularizer_val), kernel_initializer=initi)(c)
c = Model(inputs=input_global, outputs=c)
if fit_hc:
input_bidirect = Input(shape=(X_bidirect.shape[1],X_bidirect.shape[2]))
e = Conv1D(filters=2, kernel_size=2, strides=1, activation='tanh', kernel_regularizer=None, kernel_initializer=initi, padding="same")(input_bidirect)
e = Conv1D(filters=2, kernel_size=2, strides=1, activation='tanh', kernel_regularizer=None, kernel_initializer=initi, padding="same")(e)
e = MaxPooling1D(pool_size=10)(e)
e = Flatten()(e)
e = Model(inputs=input_bidirect, outputs=e)
input_cnn_siam = Input(shape=(X_train.shape[1],X_train.shape[2]))
a_siam = input_cnn_siam
for num_blocks in range(1,a_blocks+1):
a_siam = Conv1D(filters=int(a_filters_start/(2**(num_blocks-1))), kernel_size=a_kernel, strides=a_stride, activation=lrelu, kernel_regularizer=regularizers.l1(regularizer_val), kernel_initializer=initi, padding="same")(a_siam)
a_siam = Conv1D(filters=int(a_filters_start/(2**(num_blocks-1))), kernel_size=a_kernel, strides=a_stride, activation=lrelu, kernel_regularizer=regularizers.l1(regularizer_val), kernel_initializer=initi, padding="same")(a_siam)
if num_blocks < a_blocks: a_siam = MaxPooling1D(pool_size=a_max_pool)(a_siam)
a_siam = Flatten()(a_siam)
a_siam = Model(inputs=input_cnn_siam, outputs=a_siam)
input_cnn_sum = Input(shape=(X_train_sum.shape[1],X_train_sum.shape[2]))
b_siam = input_cnn_sum
for num_blocks in range(1,b_blocks+1):
b_siam = Conv1D(filters=int(b_filters_start/(2**(num_blocks-1))), kernel_size=b_kernel, strides=b_stride, activation=lrelu, kernel_regularizer=regularizers.l1(regularizer_val), kernel_initializer=initi, padding="same")(b_siam)
b_siam = Conv1D(filters=int(b_filters_start/(2**(num_blocks-1))), kernel_size=b_kernel, strides=b_stride, activation=lrelu, kernel_regularizer=regularizers.l1(regularizer_val), kernel_initializer=initi, padding="same")(b_siam)
if num_blocks < b_blocks: b_siam = MaxPooling1D(pool_size=2)(b_siam)
b_siam = Flatten()(b_siam)
b_siam = Model(inputs=input_cnn_sum, outputs=b_siam)
input_global_siam = Input(shape=(X_train_global.shape[1],))
c_siam = input_global_siam
for num_dens in range(1,global_num_dens+1):
c_siam = Dense(global_neurons, activation=lrelu, kernel_regularizer=regularizers.l1(regularizer_val), kernel_initializer=initi)(c_siam)
c_siam = Model(inputs=input_global_siam, outputs=c_siam)
if fit_hc:
input_bidirect_siam = Input(shape=(X_bidirect.shape[1],X_bidirect.shape[2]))
e_siam = Conv1D(filters=2, kernel_size=2, strides=1, activation='tanh', kernel_regularizer=None, kernel_initializer=initi, padding="same")(input_bidirect_siam)
e_siam = Conv1D(filters=2, kernel_size=2, strides=1, activation='tanh', kernel_regularizer=None, kernel_initializer=initi, padding="same")(e_siam)
e_siam = MaxPooling1D(pool_size=10)(e_siam)
e_siam = Flatten()(e_siam)
e_siam = Model(inputs=input_bidirect_siam, outputs=e_siam)
if fit_hc: combined = concatenate([a.output, b.output, c.output, e.output, a_siam.output, b_siam.output, c_siam.output, e_siam.output],axis=-1)
else: combined = concatenate([a.output, b.output, c.output],axis=-1)
d = Dense(128, activation=lrelu, kernel_regularizer=None, kernel_initializer=initi)(combined) #l2(0.001)
d = Dense(128, activation=lrelu, kernel_regularizer=None, kernel_initializer=initi)(d)
d = Dense(128, activation=lrelu, kernel_regularizer=None, kernel_initializer=initi)(d)
d = Dense(128, activation=lrelu, kernel_regularizer=None, kernel_initializer=initi)(d)
d = Dense(128, activation=lrelu, kernel_regularizer=None, kernel_initializer=initi)(d)
d = Dense(1, kernel_regularizer=None, kernel_initializer=initi)(d) #,activation="sigmoid"
if fit_hc: model = Model(inputs=[a.input, b.input, c.input, e.input, a_siam.input, b_siam.input, c_siam.input, e_siam.input], outputs=d)
else: model = Model(inputs=[a.input, b.input, c.input], outputs=d)
parallel_model = model
parallel_model.compile(loss='mean_absolute_error',
optimizer= 'Adam',
metrics=['mean_absolute_error'])
if verbose: print(parallel_model.summary())
return parallel_model
def train_test(df,
seed=42,
ratio_train=0.9):
random.seed(seed)
unique_gene_ids = list(df.index)
random.shuffle(unique_gene_ids)
ids_train = set(unique_gene_ids[0:int(len(unique_gene_ids)*ratio_train)])
ids_test = set(unique_gene_ids[int(len(unique_gene_ids)*ratio_train)+1:])
df_train = df.loc[ids_train]
df_test = df.loc[ids_test]
return df_train, df_test
def get_feat_matrix(df):
X = np.stack(df["matrix"])
X_sum = np.stack(df["matrix_sum"])
X_global = np.concatenate((np.stack(df["matrix_all"]),
np.stack(df["pos_matrix"])),
axis=1)
X_hc = np.stack(df["matrix_hc"])
return X, X_sum, X_global, X_hc, np.array(df["tr"]) #, np.array(df["first"])
def get_feat_matrix_new(df):
X = np.stack(df["matrix"])
X_sum = np.stack(df["matrix_sum"])
X_global = np.concatenate((np.stack(df["matrix_all"]),
np.stack(df["pos_matrix"])),
axis=1)
X_hc = np.stack(df["matrix_hc"])
try:
return X, X_sum, X_global, X_hc, np.array(df[["first"]]) #,"first"tr
except:
return X, X_sum, X_global, X_hc
def write_preds(df,
X,
X_sum,
X_global,
X_hc,
mods,
fit_hc=True,
correction_factor=1.0,
outfile_name="outfile.csv"):
df = df.copy()
preds_test = []
for mod in mods:
if fit_hc: pred_test = mod.predict([X,X_sum,X_global,X_hc]).flatten()*correction_factor
else: pred_test = mod.predict([X,X_sum,X_global]).flatten()*correction_factor
preds_test.append(pred_test)
pred_test = [float(sum(pred))/len(pred) for pred in list(zip(*preds_test))]
df["predictions"] = pred_test
#df["tr"] = df["tr"]*correction_factor
df.to_csv(outfile_name)
return(sum((df["tr"]-df["predictions"]).abs())/len(df.index))
def plot_preds(X,
X_sum,
X_global,
X_hc,
y,
mods,
fit_hc=True,
correction_factor=1.0,
file_save="results.png",
plot_title="Plot title"):
y = y*correction_factor
try:
preds_test = []
for mod in mods:
if fit_hc: pred_test = mod.predict([X,X_sum,X_global,X_hc]).flatten()*correction_factor
else: pred_test = mod.predict([X,X_sum,X_global]).flatten()*correction_factor
preds_test.append(pred_test)
pred_test = [float(sum(pred))/len(pred) for pred in list(zip(*preds_test))]
except:
if fit_hc: pred_test = mods.predict([X,X_sum,X_global,X_hc]).flatten()*correction_factor
else: pred_test = mods.predict([X,X_sum,X_global]).flatten()*correction_factor
corr = scipy.stats.pearsonr(y,pred_test)[0]
mae = sum(abs(np.array(y)-pred_test)/len(pred_test))
plt.figure(figsize=(10,8))
plt.scatter(pred_test, y,s=2)
plt.xlabel("predicted tr")
plt.ylabel("observed tr")
plt.title("%s - mae: %s - R: %s" % (plot_title,round(mae,3),round(corr,4)))
plt.plot([0,max(y)],[0,max(y)],c="grey")
plt.savefig(file_save)
plt.close()
"""
def write_preds(df,
X,
X_sum,
X_global,
X_hc,
X2,
X_sum2,
X_global2,
X_hc2,
mods,
fit_hc=True,
correction_factor=1.0,
outfile_name="outfile.csv"):
df = df.copy()
preds_test = []
for mod in mods:
if fit_hc: pred_test = mod.predict([X,X_sum,X_global,X_hc,X2,X_sum2,X_global2,X_hc2]) #*correction_factor #.flatten() #*correction_factor
else: pred_test = mod.predict([X,X_sum,X_global]).flatten()
preds_test.append(pred_test)
#pred_test = [float(sum(pred))/len(pred) for pred in list(zip(*preds_test))]
df["predictions_one"] = pred_test[:,0]
df["predictions_two"] = pred_test[:,1]
df["tr"] = df["tr"]
df.to_csv(outfile_name)
return(sum((df["tr"]-df["predictions_one"]).abs())/len(df.index))
def plot_preds(X,
X_sum,
X_global,
X_hc,
X2,
X_sum2,
X_global2,
X_hc2,
y,
mods,
fit_hc=True,
correction_factor=1.0,
file_save="results.png",
plot_title="Plot title"):
try:
preds_test = []
for mod in mods:
if fit_hc: pred_test = mod.predict([X,X_sum,X_global,X_hc,X2,X_sum2,X_global2,X_hc2])
else: pred_test = mod.predict([X,X_sum,X_global,X2,X_sum2,X_global2,X_hc2])
preds_test.append(pred_test)
#pred_test = [float(sum(pred))/len(pred) for pred in list(zip(*preds_test))]
except:
if fit_hc: pred_test = mods.predict([X,X_sum,X_global,X_hc,X2,X_sum2,X_global2,X_hc2])
else: pred_test = mods.predict([X,X_sum,X_global,X2,X_sum2,X_global2,X_hc2])
corr = scipy.stats.pearsonr(y[:,0],pred_test[:,0])[0]
mae = sum(abs(np.array(y[:,0])-pred_test[:,0])/len(pred_test[:,0]))
plt.figure(figsize=(10,8))
plt.scatter(y[:,0],pred_test[:,0],s=2)
plt.xlabel("predicted tr")
plt.ylabel("observed tr")
plt.title("%s - mae: %s - R: %s" % (plot_title,round(mae,3),round(corr,4)))
plt.plot([0,max(y[:,0])],[0,max(y[:,0])],c="grey")
plt.savefig(file_save)
plt.close()
corr = scipy.stats.pearsonr(y[:,1],pred_test[:,1])[0]
mae = sum(abs(np.array(y[:,0])-pred_test[:,1])/len(pred_test[:,1]))
plt.figure(figsize=(10,8))
plt.scatter(y[:,1],pred_test[:,1],s=2)
plt.xlabel("predicted tr")
plt.ylabel("observed tr")
plt.title("%s - mae: %s - R: %s" % (plot_title,round(mae,3),round(corr,4)))
plt.plot([0,max(y[:,1])],[0,max(y[:,1])],c="grey")
plt.savefig(file_save.replace(".png","")+"_std.png")
plt.close()
"""