-
Notifications
You must be signed in to change notification settings - Fork 10
/
tempo2.m
249 lines (202 loc) · 7.11 KB
/
tempo2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
function [t,xcr,D,onsetenv,oesr] = tempo2(d,sr,tmean,tsd,debug)
% [t,xcr,D,onsetenv,oesr] = tempo(d,sr,tmean,tsd,debug)
% Estimate the overall tempo of a track for the MIREX McKinney
% contest.
% d is the input audio at sampling rate sr. tmean is the mode
% for BPM weighting (in bpm) and tsd is its spread (in octaves).
% onsetenv is an already-calculated onset envelope (so d is
% ignored). debug causes a debugging plot.
% Output t(1) is the lower BPM estimate, t(2) is the faster,
% t(3) is the relative weight for t(1) compared to t(2).
% xcr is the windowed autocorrelation from which the BPM peaks were picked.
% D is the mel-freq spectrogram
% onsetenv is the "onset strength waveform", used for beat tracking
% oesr is the sampling rate of onsetenv and D.
%
% 2006-08-25 [email protected]
% uses: localmax, fft2melmx
% Copyright (c) 2006 Columbia University.
%
% This file is part of LabROSA-coversongID
%
% LabROSA-coversongID is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License version 2 as
% published by the Free Software Foundation.
%
% LabROSA-coversongID is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with LabROSA-coversongID; if not, write to the Free Software
% Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
% 02110-1301 USA
%
% See the file "COPYING" for the text of the license.
if nargin < 3; tmean = 110; end
if nargin < 4; tsd = 0.9; end
if nargin < 5; debug = 0; end
if sr < 2000
% we were passed an onset env, not a waveform
oesr = sr;
onsetenv = d;
%disp('data taken as onset envelope');
else
onsetenv = [];
sro = 8000;
% specgram: 256 bin @ 8kHz = 32 ms / 4 ms hop
swin = 256;
shop = 32;
% mel channels
nmel = 40;
% sample rate for specgram frames (granularity for rest of processing)
oesr = sro/shop;
end
% autoco out to 4 s
acmax = round(4*oesr);
D = 0;
if length(onsetenv) == 0
% no onsetenv provided - have to calculate it
% resample to 8 kHz
if (sr ~= sro)
gg = gcd(sro,sr);
d = resample(d,sro/gg,sr/gg);
sr = sro;
end
D = specgram(d,swin,sr,swin,swin-shop);
% Construct db-magnitude-mel-spectrogram
mlmx = fft2melmx(swin,sr,nmel);
D = 20*log10(max(1e-10,mlmx(:,1:(swin/2+1))*abs(D)));
% Only look at the top 80 dB
D = max(D, max(max(D))-80);
%imgsc(D)
% The raw onset decision waveform
mm = (mean(max(0,diff(D')')));
eelen = length(mm);
% dc-removed mm
onsetenv = filter([1 -1], [1 -.99],mm);
end % of onsetenv calc block
% Find rough global period
% Only use the 1st 90 sec to estimate global pd (avoid glitches?)
maxd = 60;
maxt = 120; % sec
maxcol = min(round(maxt*oesr),length(onsetenv));
mincol = max(1,maxcol-round(maxd*oesr));
xcr = xcorr(onsetenv(mincol:maxcol),onsetenv(mincol:maxcol),acmax);
% find local max in the global ac
rawxcr = xcr(acmax+1+[0:acmax]);
% window it around default bpm
bpms = 60*oesr./([0:acmax]+0.1);
xcrwin = exp(-.5*((log(bpms/tmean)/log(2)/tsd).^2));
xcr = rawxcr.*xcrwin;
xpks = localmax(xcr);
% will not include any peaks in first down slope (before goes below
% zero for the first time)
xpks(1:min(find(xcr<0))) = 0;
% largest local max away from zero
maxpk = max(xcr(xpks));
% ?? then period is shortest period with a peak that approaches the max
%maxpkthr = 0.4;
%startpd = -1 + min(find( (xpks.*xcr) > maxpkthr*maxpk ) );
%startpd = -1 + (find( (xpks.*xcr) > maxpkthr*maxpk ) );
%% no, just largest peak after windowing
%startpd = -1 + find((xpks.*xcr) == max(xpks.*xcr));
%% ??Choose acceptable peak closest to 120 bpm
%%[vv,spix] = min(abs(60./(startpd/oesr) - 120));
%%startpd = startpd(spix);
%% No, just choose shortest acceptable peak
%startpd = startpd(1);
%
%% Choose best peak out of .33 .5 2 3 x this period
%candpds = round([.33 .5 2 3]*startpd);
%candpds = candpds(candpds < acmax);
%
%[vv,xx] = max(xcr(1+candpds));
%
%startpd2 = candpds(xx);
%% Add in 2x, 3x, choose largest combined peak
%xcr2 = resample(xcr,1,2);
%xcr2 = xcr2 + xcr(1:length(xcr2));
%xcr3 = resample(xcr,1,3);
%xcr3 = xcr3 + xcr(1:length(xcr3));
% Quick and dirty explicit downsampling
lxcr = length(xcr);
xcr00 = [0, xcr, 0];
%wts = exp(-wt^2);
%sc = 1/(1+2*wts);
%xcr2 = xcr(1:ceil(lxcr/2))+sc*(wts*xcr00(1:2:lxcr)+xcr00(2:2:lxcr+1)+wts*xcr00(3:2:lxcr+2));
%xcr3 = xcr(1:ceil(lxcr/3))+sc*(wts*xcr00(1:3:lxcr)+xcr00(2:3:lxcr+1)+wts*xcr00(3:3:lxcr+2));
xcr2 = xcr(1:ceil(lxcr/2))+.5*(.5*xcr00(1:2:lxcr)+xcr00(2:2:lxcr+1)+.5*xcr00(3:2:lxcr+2));
xcr3 = xcr(1:ceil(lxcr/3))+.33*(xcr00(1:3:lxcr)+xcr00(2:3:lxcr+1)+xcr00(3:3:lxcr+2));
%subplot(413)
%plot(xcr2);
%hold on;
%plot(xcr3,'c');
%hold off
if max(xcr2) > max(xcr3)
[vv, startpd] = max(xcr2);
startpd = startpd -1;
startpd2 = startpd*2;
else
[vv, startpd] = max(xcr3);
startpd = startpd -1;
startpd2 = startpd*3;
end
% Weight by superfactors
pratio = xcr(1+startpd)/(xcr(1+startpd)+xcr(1+startpd2));
t = [60/(startpd/oesr) 60/(startpd2/oesr) pratio];
% ensure results are lowest-first
if t(2) < t(1)
t([1 2]) = t([2 1]);
t(3) = 1-t(3);
end
startpd = (60/t(1))*oesr;
startpd2 = (60/t(2))*oesr;
% figure
% disp(['tmean=',num2str(tmean),' tsd=',num2str(tsd),' maxpk=',num2str(startpd)]);
% subplot(211)
% plot([0:acmax],xcrwin/max(abs(xcrwin)),[0:acmax],xcr/max(abs(xcr)),...
% [startpd startpd],[-1 1],'-r',[startpd2 startpd2],[-1 1],'-c')
% subplot(212)
% bpms(1) = bpms(2);
% plot(bpms,xcrwin/max(abs(xcrwin)),bpms,xcr/max(abs(xcr)),...
% [t(1) t(1)],[-1 1],'-r',[t(2) t(2)],[-1 1],'-c')
if debug > 0
% Report results and plot weighted autocorrelation with picked peaks
disp(['Global bt pd = ',num2str(t(1)),' @ ',num2str(t(3)),[' / ' ...
''],num2str(t(2)),' bpm @ ',num2str(1-t(3))]);
subplot(414)
plot([0:acmax],xcr,'-b', ...
[0:acmax],xcrwin*maxpk,'-r', ...
[startpd startpd], [min(xcr) max(xcr)], '-g', ...
[startpd2 startpd2], [min(xcr) max(xcr)], '-c');
grid;
end
% Read in all the tempo settings
% for i = 1:20; f = fopen(['mirex-beattrack/train/train',num2str(i),'-tempo.txt']); r(i,:) = fscanf(f, '%f\n'); fclose(f); end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% subfunction (to avoid picking up the one from wavelet toolbox
function m = localmax(x)
% return 1 where there are local maxima in x (columnwise).
% don't include first point, maybe last point
[nr,nc] = size(x);
if nr == 1
lx = nc;
elseif nc == 1
lx = nr;
x = x';
else
lx = nr;
end
if (nr == 1) || (nc == 1)
m = (x > [x(1),x(1:(lx-1))]) & (x >= [x(2:lx),1+x(lx)]);
if nc == 1
% retranspose
m = m';
end
else
% matrix
lx = nr;
m = (x > [x(1,:);x(1:(lx-1),:)]) & (x >= [x(2:lx,:);1+x(lx,:)]);
end