Skip to content
This repository has been archived by the owner on Oct 18, 2020. It is now read-only.

Issue with displaying: tensorflow.keras.layers #27

Open
leenremm opened this issue Nov 21, 2019 · 2 comments
Open

Issue with displaying: tensorflow.keras.layers #27

leenremm opened this issue Nov 21, 2019 · 2 comments

Comments

@leenremm
Copy link

In Python 3.7.x we need to install tensorflow.keras.layers (Tensorflow compatibility is broken)

import keras
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten, Conv2D, MaxPooling2D, AveragePooling2D

# ==============================================================================

def CNN3(input_shape, output_shape):

    model = Sequential()

    # Layer #1: Convolutional Layer
    model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.2))
    model.add(Flatten())

    # Layer #2: Dense Layer
    model.add(Dense(128, activation='relu'))

    # Layer #3: Dense Layer
    model.add(Dense(output_shape, activation='softmax'))

    return model

This library does not currently support tensorflow.keras.layers

Could you kindly update this awesome vis library to support this?

@leenremm
Copy link
Author

Related StackOverflow post, describing the issue with using keras.xxx, and suggesting we use tensorflow.keras.xxx to work around.

https://stackoverflow.com/questions/55496289/how-to-fix-attributeerror-module-tensorflow-has-no-attribute-get-default-gr

@rarezhang
Copy link

rarezhang commented Mar 18, 2020

I have modified the ../ann_visualizer/visualize.py file.
It now works fine for me.

"""
Copyright (C) 2018 by Tudor Gheorghiu

Permission is hereby granted, free of charge,
to any person obtaining a copy of this software and associated
documentation files (the "Software"),
to deal in the Software without restriction,
including without l> imitation the rights to
use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice
shall be included in all copies or substantial portions of the Software.
"""

def ann_viz(model, view=True, filename="network.gv", title="My Neural Network"):
    """Vizualizez a Sequential model.

    # Arguments
        model: A Keras model instance.

        view: whether to display the model after generation.

        filename: where to save the vizualization. (a .gv file)

        title: A title for the graph
    """
    from graphviz import Digraph;
    #import keras;
    import tensorflow
    from tensorflow import keras
    #from keras.models import Sequential;
    from tensorflow.keras.models import Sequential
    #from keras.layers import Dense, Conv2D, MaxPooling2D, Dropout, Flatten;
    from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Dropout, Flatten
    import json;
    input_layer = 0;
    hidden_layers_nr = 0;
    layer_types = [];
    hidden_layers = [];
    output_layer = 0;
    for layer in model.layers:
        if(layer == model.layers[0]):
            input_layer = int(str(layer.input_shape).split(",")[1][1:-1]);
            hidden_layers_nr += 1;
            #if (type(layer) == (keras.layers.core.Dense)):
            if (type(layer) == (keras.layers.Dense)):
                hidden_layers.append(int(str(layer.output_shape).split(",")[1][1:-1]));
                layer_types.append("Dense");
            else:
                hidden_layers.append(1);
                #if (type(layer) == keras.layers.convolutional.Conv2D):
                if (type(layer) == keras.layers.Conv2D):
                    layer_types.append("Conv2D");
                #elif (type(layer) == keras.layers.pooling.MaxPooling2D):
                elif (type(layer) == keras.layers.MaxPooling2D):
                    layer_types.append("MaxPooling2D");
                #elif (type(layer) == keras.layers.core.Dropout):
                elif (type(layer) == keras.layers.Dropout):
                    layer_types.append("Dropout");
                #elif (type(layer) == keras.layers.core.Flatten):
                elif (type(layer) == keras.layers.Flatten):
                    layer_types.append("Flatten");
                #elif (type(layer) == keras.layers.core.Activation):
                elif (type(layer) == keras.layers.Activation):
                    layer_types.append("Activation");
        else:
            if(layer == model.layers[-1]):
                output_layer = int(str(layer.output_shape).split(",")[1][1:-1]);
            else:
                hidden_layers_nr += 1;
                #if (type(layer) == keras.layers.core.Dense):
                if (type(layer) == keras.layers.Dense):
                    hidden_layers.append(int(str(layer.output_shape).split(",")[1][1:-1]));
                    layer_types.append("Dense");
                else:
                    hidden_layers.append(1);
                    #if (type(layer) == keras.layers.convolutional.Conv2D):
                    if (type(layer) == keras.layers.Conv2D):
                        layer_types.append("Conv2D");
                    #elif (type(layer) == keras.layers.pooling.MaxPooling2D):
                    elif (type(layer) == keras.layers.MaxPooling2D):
                        layer_types.append("MaxPooling2D");
                    #elif (type(layer) == keras.layers.core.Dropout):
                    elif (type(layer) == keras.layers.Dropout):
                        layer_types.append("Dropout");
                    #elif (type(layer) == keras.layers.core.Flatten):
                    elif (type(layer) == keras.layers.Flatten):
                        layer_types.append("Flatten");
                    #elif (type(layer) == keras.layers.core.Activation):
                    elif (type(layer) == keras.layers.Activation):
                        layer_types.append("Activation");
        last_layer_nodes = input_layer;
        nodes_up = input_layer;
        #if(type(model.layers[0]) != keras.layers.core.Dense):
        if(type(model.layers[0]) != keras.layers.Dense):
            last_layer_nodes = 1;
            nodes_up = 1;
            input_layer = 1;

        g = Digraph('g', filename=filename);
        n = 0;
        g.graph_attr.update(splines="false", nodesep='1', ranksep='2');
        #Input Layer
        with g.subgraph(name='cluster_input') as c:
            #if(type(model.layers[0]) == keras.layers.core.Dense):
            if(type(model.layers[0]) == keras.layers.Dense):
                the_label = title+'\n\n\n\nInput Layer';
                if (int(str(model.layers[0].input_shape).split(",")[1][1:-1]) > 10):
                    the_label += " (+"+str(int(str(model.layers[0].input_shape).split(",")[1][1:-1]) - 10)+")";
                    input_layer = 10;
                c.attr(color='white')
                for i in range(0, input_layer):
                    n += 1;
                    c.node(str(n));
                    c.attr(label=the_label)
                    c.attr(rank='same');
                    c.node_attr.update(color="#2ecc71", style="filled", fontcolor="#2ecc71", shape="circle");

            #elif(type(model.layers[0]) == keras.layers.convolutional.Conv2D):
            elif(type(model.layers[0]) == keras.layers.Conv2D):
                #Conv2D Input visualizing
                the_label = title+'\n\n\n\nInput Layer';
                c.attr(color="white", label=the_label);
                c.node_attr.update(shape="square");
                pxls = str(model.layers[0].input_shape).split(',');
                clr = int(pxls[3][1:-1]);
                if (clr == 1):
                    clrmap = "Grayscale";
                    the_color = "black:white";
                elif (clr == 3):
                    clrmap = "RGB";
                    the_color = "#e74c3c:#3498db";
                else:
                    clrmap = "";
                c.node_attr.update(fontcolor="white", fillcolor=the_color, style="filled");
                n += 1;
                c.node(str(n), label="Image\n"+pxls[1]+" x"+pxls[2]+" pixels\n"+clrmap, fontcolor="white");
            else:
                raise ValueError("ANN Visualizer: Layer not supported for visualizing");
        for i in range(0, hidden_layers_nr):
            with g.subgraph(name="cluster_"+str(i+1)) as c:
                if (layer_types[i] == "Dense"):
                    c.attr(color='white');
                    c.attr(rank='same');
                    #If hidden_layers[i] > 10, dont include all
                    the_label = "";
                    if (int(str(model.layers[i].output_shape).split(",")[1][1:-1]) > 10):
                        the_label += " (+"+str(int(str(model.layers[i].output_shape).split(",")[1][1:-1]) - 10)+")";
                        hidden_layers[i] = 10;
                    c.attr(labeljust="right", labelloc="b", label=the_label);
                    for j in range(0, hidden_layers[i]):
                        n += 1;
                        c.node(str(n), shape="circle", style="filled", color="#3498db", fontcolor="#3498db");
                        for h in range(nodes_up - last_layer_nodes + 1 , nodes_up + 1):
                            g.edge(str(h), str(n));
                    last_layer_nodes = hidden_layers[i];
                    nodes_up += hidden_layers[i];
                elif (layer_types[i] == "Conv2D"):
                    c.attr(style='filled', color='#5faad0');
                    n += 1;
                    kernel_size = str(model.layers[i].get_config()['kernel_size']).split(',')[0][1] + "x" + str(model.layers[i].get_config()['kernel_size']).split(',')[1][1 : -1];
                    filters = str(model.layers[i].get_config()['filters']);
                    c.node("conv_"+str(n), label="Convolutional Layer\nKernel Size: "+kernel_size+"\nFilters: "+filters, shape="square");
                    c.node(str(n), label=filters+"\nFeature Maps", shape="square");
                    g.edge("conv_"+str(n), str(n));
                    for h in range(nodes_up - last_layer_nodes + 1 , nodes_up + 1):
                        g.edge(str(h), "conv_"+str(n));
                    last_layer_nodes = 1;
                    nodes_up += 1;
                elif (layer_types[i] == "MaxPooling2D"):
                    c.attr(color="white");
                    n += 1;
                    pool_size = str(model.layers[i].get_config()['pool_size']).split(',')[0][1] + "x" + str(model.layers[i].get_config()['pool_size']).split(',')[1][1 : -1];
                    c.node(str(n), label="Max Pooling\nPool Size: "+pool_size, style="filled", fillcolor="#8e44ad", fontcolor="white");
                    for h in range(nodes_up - last_layer_nodes + 1 , nodes_up + 1):
                        g.edge(str(h), str(n));
                    last_layer_nodes = 1;
                    nodes_up += 1;
                elif (layer_types[i] == "Flatten"):
                    n += 1;
                    c.attr(color="white");
                    c.node(str(n), label="Flattening", shape="invtriangle", style="filled", fillcolor="#2c3e50", fontcolor="white");
                    for h in range(nodes_up - last_layer_nodes + 1 , nodes_up + 1):
                        g.edge(str(h), str(n));
                    last_layer_nodes = 1;
                    nodes_up += 1;
                elif (layer_types[i] == "Dropout"):
                    n += 1;
                    c.attr(color="white");
                    c.node(str(n), label="Dropout Layer", style="filled", fontcolor="white", fillcolor="#f39c12");
                    for h in range(nodes_up - last_layer_nodes + 1 , nodes_up + 1):
                        g.edge(str(h), str(n));
                    last_layer_nodes = 1;
                    nodes_up += 1;
                elif (layer_types[i] == "Activation"):
                    n += 1;
                    c.attr(color="white");
                    fnc = model.layers[i].get_config()['activation'];
                    c.node(str(n), shape="octagon", label="Activation Layer\nFunction: "+fnc, style="filled", fontcolor="white", fillcolor="#00b894");
                    for h in range(nodes_up - last_layer_nodes + 1 , nodes_up + 1):
                        g.edge(str(h), str(n));
                    last_layer_nodes = 1;
                    nodes_up += 1;


        with g.subgraph(name='cluster_output') as c:
            #if (type(model.layers[-1]) == keras.layers.core.Dense):
            if (type(model.layers[-1]) == keras.layers.Dense):
                c.attr(color='white')
                c.attr(rank='same');
                c.attr(labeljust="1");
                for i in range(1, output_layer+1):
                    n += 1;
                    c.node(str(n), shape="circle", style="filled", color="#e74c3c", fontcolor="#e74c3c");
                    for h in range(nodes_up - last_layer_nodes + 1 , nodes_up + 1):
                        g.edge(str(h), str(n));
                c.attr(label='Output Layer', labelloc="bottom")
                c.node_attr.update(color="#2ecc71", style="filled", fontcolor="#2ecc71", shape="circle");

        g.attr(arrowShape="none");
        g.edge_attr.update(arrowhead="none", color="#707070");
        if view == True:
            g.view();

Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants