-
Notifications
You must be signed in to change notification settings - Fork 7
/
example2.py
391 lines (358 loc) · 13.6 KB
/
example2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
# example.py shows how to train a multi-task polyGNN starting from data
# with three columns: "smiles_string", "prop", and "value". But what if
# we have additional metadata that we want the model to use, for example
# temperature or structural parameters? These parameters can be leveraged
# by adding another column, "graph_feats", to your data file.
#
# This file walks through such an example. We model three
# properties: band gap (Eg), electron affinity (Ea) and
# ionization potential (Ei). However, we may predict the Eg of either
# the chain or the bulk (i.e., crystal) representation of the polymer. This metadata
# will be specified in "graph_feats".
from nndebugger import dl_debug
import argparse
import time
import random
import pandas as pd
import numpy as np
from os import mkdir
from tqdm import tqdm
from skopt import gp_minimize
from sklearn.model_selection import train_test_split
import torch
from torch import nn
import polygnn
import polygnn_trainer as pt
pd.options.mode.chained_assignment = None
# parse command line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--polygnn", default=False, action="store_true")
parser.add_argument("--polygnn2", default=False, action="store_true")
parser.add_argument("--device", choices=["cpu", "gpu"], default="gpu")
args = parser.parse_args()
if (not args.polygnn) and (not args.polygnn2):
raise ValueError("Neither the polygnn nor the polygnn2 flags are set. Choose one.")
elif args.polygnn and args.polygnn2:
raise ValueError("Both the polygnn and the polygnn2 flags are set. Choose one.")
# #########
# constants
# #########
# For improved speed, some settings below differ from those used in the
# companion paper. In such cases, the values used in the paper are provided
# as a comment.
RANDOM_SEED = 100
HP_EPOCHS = 20 # companion paper used 200
SUBMODEL_EPOCHS = 100 # companion paper used 1000
N_FOLDS = 3 # companion paper used 5
HP_NCALLS = 10 # companion paper used 25
MAX_BATCH_SIZE = 50 # companion paper used 450
capacity_ls = list(range(2, 6)) # companion paper used list(range(2, 14))
weight_decay = 0
bond_config = polygnn.featurize.BondConfig(True, True, True)
atom_config = polygnn.featurize.AtomConfig(
True,
True,
True,
True,
True,
True,
combo_hybrid=False, # if True, SP2/SP3 are combined into one feature
aromatic=True,
)
#####################
# fix random seeds
random.seed(RANDOM_SEED)
torch.manual_seed(RANDOM_SEED)
np.random.seed(RANDOM_SEED)
# #####################################################################
# Let's reuse the same sample data used in example.py and then process
# it to include graph_feats.
# #####################################################################
master_data = pd.read_csv("./sample_data/sample.csv", index_col=0)
# Add an empty column for graph_feats.
master_data["graph_feats"] = [None] * len(master_data)
# Convert Egc to Eg and add the corresponding graph_feats.
n_Egc = len(master_data[master_data["prop"] == "Egc"])
master_data.loc[master_data["prop"] == "Egc", "graph_feats"] = [
{"chain": 1, "bulk": 0}
] * n_Egc
master_data.loc[master_data["prop"] == "Egc", "prop"] = "Eg"
# Convert Egb to Eg and add the corresponding graph_feats.
n_Egb = len(master_data[master_data["prop"] == "Egb"])
master_data.loc[master_data["prop"] == "Egb", "graph_feats"] = [
{"chain": 0, "bulk": 1}
] * n_Egc
master_data.loc[master_data["prop"] == "Egb", "prop"] = "Eg"
# Add graph_feats for Ea and Ei.
master_data.loc[master_data["prop"] != "Eg", "graph_feats"] = [
{"chain": 0, "bulk": 0}
] * (len(master_data) - n_Egc - n_Egb)
# Print out 10 random rows of master_data to see how the data has changed
# compared to "sample.csv".
print(master_data.sample(n=10))
print("\n")
# #####################################################################
start = time.time()
# The companion paper trains multi-task (MT) models for six groups. In this
# example file, we will only train an MT model for electronic properties.
PROPERTY_GROUPS = {
"electronic": [
"Eg",
"Ea",
"Ei",
],
}
# Choose the device to train our models on.
if args.device == "cpu":
device = "cpu"
elif args.device == "gpu":
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # specify GPU
# Split the data.
train_data, test_data = train_test_split(
master_data,
test_size=0.2,
stratify=master_data.prop,
random_state=RANDOM_SEED,
)
assert len(train_data) > len(test_data)
if args.polygnn:
featurization_scheme = "monocycle"
elif args.polygnn2:
featurization_scheme = "trimer"
smiles_featurizer = lambda x: polygnn.featurize.get_minimum_graph_tensor(
x,
bond_config,
atom_config,
featurization_scheme,
)
# Make a directory to save our models in. If you are using this file
# as a template to train a new model, then feel free to change this
# name to suit your use case.
parent_dir = "example_models/"
mkdir(parent_dir)
# Train one model per group. We only have one group, "electronic", in this
# example file.
for group in PROPERTY_GROUPS:
# Get the columns of the properties to be modeled for this group.
prop_cols = sorted(PROPERTY_GROUPS[group])
print(
f"Working on group {group}. The following properties will be modeled: {prop_cols}",
flush=True,
)
# For single task models, `selector_dim` should equal 0. `selector_dim` refers to the
# dimension of the selector vector. For multi-task data, `polygnn.prepare.prepare_train`
# will, for each row in your data, create a selector vector. Each vector contains one
# dimension per task. For single task, `polygnn.prepare.prepare_train` creates an empty
# selector vector, so the dimension is equal to 0. But since this example file deals
# with multi-task models, I use `selector_dim = len(prop_cols)`.
selector_dim = len(prop_cols)
# Define a directory to save the trained model for this group of properties.
root_dir = parent_dir + group
# Get the data for this group.
group_train_data = train_data.loc[train_data.prop.isin(prop_cols), :]
group_test_data = test_data.loc[test_data.prop.isin(prop_cols), :]
# Define the augmented_featurizer function for this group based on the input arguments.
if args.polygnn:
# Create a dictionary of graph tensors for each smiles string
# in the data set. Creating this dictionary here instead of inside
# augmented_featurizer will save time during training because the
# same graph tensor will not need to be created each epoch.
print(f"\nMaking eq_graph_tensors for group {group}")
eq_graph_tensors = {
x: polygnn.featurize.get_equivalent_graph_tensors(
x,
upper_bound=5,
bond_config=bond_config,
atom_config=atom_config,
)
for x in tqdm(group_train_data.smiles_string.values.tolist())
}
augmented_featurizer = lambda x: random.sample(eq_graph_tensors[x], k=1)[0]
elif args.polygnn2:
# polygnn2 requires no augmentation.
augmented_featurizer = None
######################
# prepare data
######################
group_train_inds = group_train_data.index.values.tolist()
group_test_inds = group_test_data.index.values.tolist()
group_data = pd.concat([group_train_data, group_test_data], ignore_index=False)
group_data, scaler_dict = pt.prepare.prepare_train(
group_data, smiles_featurizer=smiles_featurizer, root_dir=root_dir
)
print([(k, str(v)) for k, v in scaler_dict.items()])
group_train_data = group_data.loc[group_train_inds, :]
group_test_data = group_data.loc[group_test_inds, :]
######################
# find optimal capacity
######################
model_class_ls = []
input_dim = pt.utils.get_input_dim(group_data.data.values[0])
for capacity in capacity_ls:
hps = pt.hyperparameters.HpConfig()
hps.set_values(
{
"dropout_pct": 0.0,
"capacity": capacity,
"activation": torch.nn.functional.leaky_relu,
}
)
model_class_ls.append(
lambda: polygnn.models.polyGNN(
node_size=atom_config.n_features,
edge_size=bond_config.n_features,
selector_dim=selector_dim,
hps=hps,
graph_feats_dim=2, # one for 'chain', one for 'bulk'.
)
)
session = dl_debug.DebugSession(
model_class_ls=model_class_ls,
model_type="gnn",
capacity_ls=capacity_ls,
data_set=group_data.data.values.tolist(),
zero_data_set=None,
loss_fn=pt.loss.sh_mse_loss(),
device=device,
do_choose_model_size_by_overfit=True,
batch_size=MAX_BATCH_SIZE,
)
optimal_capacity = session.choose_model_size_by_overfit()
# #################################
# Do hyperparameters optimization.
# #################################
# Split train and validation data.
group_fit_data, group_val_data = train_test_split(
group_train_data,
test_size=0.2,
stratify=group_train_data.prop,
random_state=RANDOM_SEED,
)
fit_pts = group_fit_data.data.values.tolist()
val_pts = group_val_data.data.values.tolist()
print(
f"\nStarting hyperparameter optimization. Using {len(fit_pts)} data points for fitting, {len(val_pts)} data points for validation."
)
# Define the objective function.
def obj_func(x):
hps = pt.hyperparameters.HpConfig()
hps.set_values(
{
"r_learn": 10 ** x[0],
"batch_size": x[1],
"dropout_pct": x[2],
"capacity": optimal_capacity,
"activation": nn.functional.leaky_relu,
}
)
print("Using hyperparameters:", hps)
tc_search = pt.train.trainConfig(
hps=hps,
device=device,
amp=False,
multi_head=False,
loss_obj=pt.loss.sh_mse_loss(),
) # trainConfig for the hyperparameter search.
tc_search.epochs = HP_EPOCHS
model = polygnn.models.polyGNN(
node_size=atom_config.n_features,
edge_size=bond_config.n_features,
selector_dim=selector_dim,
hps=hps,
graph_feats_dim=2, # one for 'chain', one for 'bulk'.
)
val_rmse = pt.train.train_submodel(
model,
fit_pts,
val_pts,
scaler_dict,
tc_search,
)
return val_rmse
# Define the hyperparameter space.
hp_space = [
(np.log10(0.0003), np.log10(0.03)), # learning rate.
(round(0.25 * MAX_BATCH_SIZE), MAX_BATCH_SIZE), # batch size.
(0, 0.5), # dropout.
]
# Obtain the optimal point in hyperparameter space.
opt_obj = gp_minimize(
func=obj_func, # defined offline.
dimensions=hp_space,
n_calls=HP_NCALLS,
random_state=RANDOM_SEED,
)
# Create an HpConfig from the optimal point in hyperparameter space.
optimal_hps = pt.hyperparameters.HpConfig()
optimal_hps.set_values(
{
"r_learn": 10 ** opt_obj.x[0],
"batch_size": opt_obj.x[1],
"dropout_pct": opt_obj.x[2],
"capacity": optimal_capacity,
"activation": nn.functional.leaky_relu,
}
)
print(f"Optimal hyperparameters are {opt_obj.x}.")
# Clear memory.
del group_fit_data
del group_val_data
# Train submodels.
ensemble_train_config = pt.train.trainConfig(
amp=False,
loss_obj=pt.loss.sh_mse_loss(),
hps=optimal_hps,
device=device,
multi_head=False,
) # trainConfig for the ensemble step
ensemble_train_config.epochs = SUBMODEL_EPOCHS
print(f"\nTraining ensemble using {len(group_train_data)} data points.")
pt.train.train_kfold_ensemble(
dataframe=group_train_data,
model_constructor=lambda: polygnn.models.polyGNN(
node_size=atom_config.n_features,
edge_size=bond_config.n_features,
selector_dim=selector_dim,
hps=optimal_hps,
graph_feats_dim=2, # one for 'chain', one for 'bulk'.
),
train_config=ensemble_train_config,
submodel_trainer=pt.train.train_submodel,
augmented_featurizer=augmented_featurizer,
scaler_dict=scaler_dict,
root_dir=root_dir,
n_fold=N_FOLDS,
random_seed=RANDOM_SEED,
)
# Load and evaluate ensemble on test data.
print("\nRunning predictions on test data.", flush=True)
ensemble = pt.load.load_ensemble(
root_dir,
polygnn.models.polyGNN,
device,
{
"node_size": atom_config.n_features,
"edge_size": bond_config.n_features,
"selector_dim": selector_dim,
"graph_feats_dim": 2, # one for 'chain', one for 'bulk'.
},
)
# Remake "group_test_data" so that "graph_feats" contains dicts not arrays.
group_test_data = test_data.loc[
test_data.prop.isin(prop_cols),
:,
]
y, y_mean_hat, y_std_hat, _selectors = pt.infer.eval_ensemble(
model=ensemble,
root_dir=root_dir,
dataframe=group_test_data,
smiles_featurizer=smiles_featurizer,
device=device,
ensemble_kwargs_dict={"monte_carlo": False},
)
pt.utils.mt_print_metrics(
y, y_mean_hat, _selectors, scaler_dict, inverse_transform=False
)
print(f"Done working on group {group}.\n", flush=True)
end = time.time()
print(f"Done with everything in {end-start} seconds.", flush=True)