-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSummary_data.R
81 lines (69 loc) · 2.37 KB
/
Summary_data.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# Clear variables and close windows
rm(list = ls(all = TRUE))
graphics.off()
# Set working directory
# setwd('~/...') # linux/mac os
# setwd('/Users/...') # windows
## Install packages
# install.packages(KernSmooth)
# install.packages(rugarch)
# install.packages(fGarch)
# install.packages(forecast)
# install.packages(TSA)
# install.packages(ks)
# install.packages(matlab)
# install.packages("optimx")
# Load packages
library(KernSmooth)
library(rugarch)
# library(fGarch)
library(forecast)
library(TSA)
library(ks)
library(matlab)
library(splines) # bs()
library(pracma)
library(optimx)
library(data.table)
library(dplyr)
library(ggplot2)
library(dplyr)
library(readxl)
# install.packages("reticulate")
library(reticulate)
library(xlsx)
# set directory
# path <- "~/Library/CloudStorage/OneDrive-NationalUniversityofSingapore/PAPER/Pricing/code/test/"
Path_raw = "/Users/ruting/Library/Mobile Documents/com~apple~CloudDocs/PK_BTC/code_data/"
path <- "/Users/ruting/Library/Mobile Documents/com~apple~CloudDocs/PK_BTC/code_data/main_code/"
setwd(path)
raw_data_sp = read.csv('SP500Raw_data.csv')
raw_data_sp$strike = raw_data_sp$strike/1000
raw_data_sp$moneyness = raw_data_sp$index_price/raw_data_sp$strike
raw_data_cry = read.csv('CryptoRaw_data.csv')
raw_data_cry$date = as.POSIXct(raw_data_cry$date, tz = "UTC")
raw_data_cry$date = format(raw_data_cry$date, format = "%Y-%m-%d")
# SP 500 data
# date, tau, original obs, type, IV is not empty, moneyness between 0.8 and 1.2,
date_tau = read_excel("Sum_date.xlsx") %>% data.frame()
date_tau$dates_Q = format(date_tau$dates_Q, format = "%Y-%m-%d")
date_tau$obs_raw = NA
date_tau$IV_Empty = NA
date_tau$IV_Zero= NA
date_tau$Moneyness_inRange = NA
for (i in c(1:nrow(date_tau))){
Type = date_tau$Type[i]
date = date_tau$dates_Q[i]
tau = date_tau$tau[i]
if (Type == "SP500"){
temp_data = raw_data_sp[raw_data_sp$date == date & raw_data_sp$tau == tau,]
}else{
temp_data = raw_data_cry[raw_data_cry$date == date & raw_data_cry$tau == tau,]
}
date_tau$obs_raw[i] = nrow(temp_data)
date_tau$IV_Empty[i] = length(which(is.na(temp_data$mark_iv)))
date_tau$IV_Zero[i] = length(which(temp_data$mark_iv==0))
date_tau$Moneyness_inRange[i] = length(which(temp_data$moneyness >= 0.8 & temp_data$moneyness <1.2
& temp_data$mark_iv>0))
}
write.xlsx(date_tau,file = 'Data_summary.xlsx')