-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmatLib3D.hold
262 lines (225 loc) · 5.82 KB
/
matLib3D.hold
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
/* =========================================================================
* %
* % Author: [email protected]
* %
* % =========================================================================*/
__device__ inline double hypot2(double x, double y) {
return sqrt(x*x+y*y);
}
// Symmetric Householder reduction to tridiagonal form.
__device__ inline void tred2(double V[9], double d[3], double e[3]) {
// This is derived from the Algol procedures tred2 by
// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
// Fortran subroutine in EISPACK.
int i, j, k;
double f, g, h, hh;
for (j = 0; j < 3; j++) {
d[j] = V[2+3*j];
}
// Householder reduction to tridiagonal form.
for (i = 2; i > 0; i--) {
// Scale to avoid under/overflow.
double scale = 0.0;
double h = 0.0;
for (k = 0; k < i; k++) {
scale = scale + fabs(d[k]);
}
if (scale == 0.0) {
e[i] = d[i-1];
for (j = 0; j < i; j++) {
d[j] = V[i-1+3*j];
V[i+3*j] = 0.0;
V[j+3*i] = 0.0;
}
} else {
// Generate Householder vector.
for (k = 0; k < i; k++) {
d[k] /= scale;
h += d[k] * d[k];
}
f = d[i-1];
g = sqrt(h);
if (f > 0) {
g = -g;
}
e[i] = scale * g;
h = h - f * g;
d[i-1] = f - g;
for (j = 0; j < i; j++) {
e[j] = 0.0;
}
// Apply similarity transformation to remaining columns.
for (j = 0; j < i; j++) {
f = d[j];
V[j+3*i] = f;
g = e[j] + V[j+3*j] * f;
for (k = j+1; k <= i-1; k++) {
g += V[k+3*j] * d[k];
e[k] += V[k+3*j] * f;
}
e[j] = g;
}
f = 0.0;
for (j = 0; j < i; j++) {
e[j] /= h;
f += e[j] * d[j];
}
hh = f / (h + h);
for (j = 0; j < i; j++) {
e[j] -= hh * d[j];
}
for (j = 0; j < i; j++) {
f = d[j];
g = e[j];
for (k = j; k <= i-1; k++) {
V[k+3*j] -= (f * e[k] + g * d[k]);
}
d[j] = V[i-1+3*j];
V[i+3*j] = 0.0;
}
}
d[i] = h;
}
// Accumulate transformations.
for (i = 0; i < 2; i++) {
V[2+3*i] = V[4*i];
V[4*i] = 1.0;
h = d[i+1];
if (h != 0.0) {
for (k = 0; k <= i; k++) {
d[k] = V[k+3*(i+1)] / h;
}
for (j = 0; j <= i; j++) {
g = 0.0;
for (k = 0; k <= i; k++) {
g += V[k+3*(i+1)] * V[k+3*j];
}
for (k = 0; k <= i; k++) {
V[k+3*j] -= g * d[k];
}
}
}
for (k = 0; k <= i; k++) {
V[k+3*(i+1)] = 0.0;
}
}
for (j = 0; j < 3; j++) {
d[j] = V[2+3*j];
V[2+3*j] = 0.0;
}
V[8] = 1.0;
e[0] = 0.0;
}
// Symmetric tridiagonal QL algorithm.
__device__ inline void tql2(double V[9], double d[3], double e[3]) {
// This is derived from the Algol procedures tql2, by
// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
// Fortran subroutine in EISPACK.
int i, j, m, l, k;
double g, p, r, dl1, h, f, tst1, eps;
double c, c2, c3, el1, s, s2;
for (i = 1; i < 3; i++) {
e[i-1] = e[i];
}
e[2] = 0.0;
f = 0.0;
tst1 = 0.0;
eps = pow(2.0, -52.0);
for (l = 0; l < 3; l++) {
// Find small subdiagonal element
tst1 = max(tst1, fabs(d[l]) + fabs(e[l]));
m = l;
while (m < 3) {
if (fabs(e[m]) <= eps*tst1) {
break;
}
m++;
}
// If m == l, d[l] is an eigenvalue,
// otherwise, iterate.
if (m > l) {
int iter = 0;
do {
iter = iter + 1; // (Could check iteration count here.)
// Compute implicit shift
g = d[l];
p = (d[l+1] - g) / (2.0 * e[l]);
r = hypot2(p, 1.0);
if (p < 0) {
r = -r;
}
d[l] = e[l] / (p + r);
d[l+1] = e[l] * (p + r);
dl1 = d[l+1];
h = g - d[l];
for (i = l+2; i < 3; i++) {
d[i] -= h;
}
f = f + h;
// Implicit QL transformation.
p = d[m];
c = 1.0;
c2 = c;
c3 = c;
el1 = e[l+1];
s = 0.0;
s2 = 0.0;
for (i = m-1; i >= l; i--) {
c3 = c2;
c2 = c;
s2 = s;
g = c * e[i];
h = c * p;
r = hypot2(p, e[i]);
e[i+1] = s * r;
s = e[i] / r;
c = p / r;
p = c * d[i] - s * g;
d[i+1] = h + s * (c * g + s * d[i]);
// Accumulate transformation.
for (k = 0; k < 3; k++) {
h = V[k+3*(i+1)];
V[k+3*(i+1)] = s * V[k+3*i] + c * h;
V[k+3*i] = c * V[k+3*i] - s * h;
}
}
p = -s * s2 * c3 * el1 * e[l] / dl1;
e[l] = s * p;
d[l] = c * p;
// Check for convergence.
} while (fabs(e[l]) > eps*tst1);
}
d[l] = d[l] + f;
e[l] = 0.0;
}
// Sort eigenvalues and corresponding vectors.
for (i = 0; i < 2; i++) {
k = i;
p = d[i];
for (j = i+1; j < 3; j++) {
if (d[j] < p) {
k = j;
p = d[j];
}
}
if (k != i) {
d[k] = d[i];
d[i] = p;
for (j = 0; j < 3; j++) {
p = V[j+3*i];
V[j+3*i] = V[j+3*k];
V[j+3*k] = p;
}
}
}
}
__device__ inline void eigen3x3SymRec(double X[6], double V[9], double E[3]){
X[0]=V[0]*V[0]*E[0]+V[3]*V[3]*E[1]+V[6]*V[6]*E[2];
X[1]=V[0]*V[1]*E[0]+V[3]*V[4]*E[1]+V[6]*V[7]*E[2];
X[2]=V[0]*V[2]*E[0]+V[3]*V[5]*E[1]+V[6]*V[8]*E[2];
X[3]=V[1]*V[1]*E[0]+V[4]*V[4]*E[1]+V[7]*V[7]*E[2];
X[4]=V[1]*V[2]*E[0]+V[4]*V[5]*E[1]+V[7]*V[8]*E[2];
X[5]=V[2]*V[2]*E[0]+V[5]*V[5]*E[1]+V[8]*V[8]*E[2];
}