diff --git a/REPs/REP-54.md b/REPs/REP-54.md index 89d44a3..2f2b9c0 100644 --- a/REPs/REP-54.md +++ b/REPs/REP-54.md @@ -44,34 +44,34 @@ Where: - $E_i$ is the stability score of Node $i$. $$ -R_i = \frac{\text{valid\_count}_i}{\max(\text{valid\_count})} - \alpha \cdot \frac{\text{invalid\_count}_i}{\max(\text{invalid\_count})} +R_i = \frac{\text{validCount}_i}{\max(\text{validCount})} - \alpha \cdot \frac{\text{invalidCount}_i}{\max(\text{invalidCount})} $$ where: -- $\text{valid\_count}_i$ is the valid request count of Node $i$. -- $\text{invalid\_count}_i$ is the potential invalid request count of Node $i$. +- $\text{validCount}_i$ is the valid request count of Node $i$. +- $\text{invalidCount}_i$ is the potential invalid request count of Node $i$. - $\alpha$ is a constant factor, representing the weight of the invalid request count. $$ -D_i = \beta_1 \cdot \frac{\text{network\_count}_i}{\max(\text{network\_count})} + \beta_2 \cdot \frac{\text{worker\_count}_i}{\max(\text{worker\_count})} + \beta_3 \cdot \frac{\text{activity\_count}_i}{\max(\text{activity\_count})} +D_i = \beta_1 \cdot \frac{\text{networkCount}_i}{\max(\text{networkCount})} + \beta_2 \cdot \frac{\text{workerCount}_i}{\max(\text{workerCount})} + \beta_3 \cdot \frac{\text{activityCount}_i}{\max(\text{activityCount})} $$ where: -- $\text{network\_count}_i$ is the number of supported networks of Node $i$. -- $\text{worker\_count}_i$ is the worker count of Node $i$. -- $\text{activity\_count}_i$ is the activity count of Node $i$. +- $\text{networkCount}_i$ is the number of supported networks of Node $i$. +- $\text{workerCount}_i$ is the worker count of Node $i$. +- $\text{activityCount}_i$ is the activity count of Node $i$. - $\beta_1$, $\beta_2$, $\beta_3$ are the weights of the three factors, and $\beta_1 + \beta_2 + \beta_3 = 1$. $$ -E_i = \gamma_1 \cdot \frac{\text{uptime}_i}{\max(\text{uptime})} + \gamma_2 \cdot \text{version\_score}_i +E_i = \gamma_1 \cdot \frac{\text{uptime}_i}{\max(\text{uptime})} + \gamma_2 \cdot \text{versionScore}_i $$ where: - $\text{uptime}_i$ is the continuous uptime of Node $i$. -- $\text{version\_score}_i = 1$ if the node uses the latest version, otherwise $0$. +- $\text{versionScore}_i = 1$ if the node uses the latest version, otherwise $0$. - $\gamma_1$, $\gamma_2$ are the weights of the two factors, and $\gamma_1 + \gamma_2 = 1$. ## Rationale