Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

RCCL AllReduce fails on docker container #1683

Open
dongmin-ra opened this issue Nov 8, 2024 · 0 comments
Open

RCCL AllReduce fails on docker container #1683

dongmin-ra opened this issue Nov 8, 2024 · 0 comments

Comments

@dongmin-ra
Copy link

dongmin-ra commented Nov 8, 2024

🐛 Describe the bug

On image rocm/pytorch:rocm6.2_ubuntu20.04_py3.9_pytorch_release_2.3.0 and rocm/pytorch:rocm6.2_ubuntu22.04_py3.9_pytorch_release_2.2.1, rccl allreduce fails.

docker run command

docker run -it \
   --network=host \
   --group-add=video \
   --ipc=host \
   --cap-add=SYS_PTRACE \
   --security-opt seccomp=unconfined \
   --device /dev/kfd  --device /dev/dri \
   --rm \
   rocm/pytorch:rocm6.2_ubuntu20.04_py3.9_pytorch_release_2.3.0 \
   bash

test script

import os
import torch
import torch.distributed as dist
import torch.multiprocessing as mp


def setup(rank, world_size):
    os.environ['MASTER_ADDR'] = 'localhost'
    os.environ['MASTER_PORT'] = '23355'

    # initialize the process group
    dist.init_process_group("nccl", rank=rank, world_size=world_size)

def cleanup():
    dist.destroy_process_group()

def test(rank, world_size):
    setup(rank, world_size)
    torch.cuda.set_device(rank)

    t = torch.ones(10,10).cuda()
    dist.all_reduce(t)
    if rank == 0:
        print(t)
    cleanup()

def run_demo(demo_fn, world_size):
    mp.spawn(demo_fn,
             args=(world_size,),
             nprocs=world_size,
             join=True)


if __name__ == "__main__":
    run_demo(test, 2)

error message

:0:rocdevice.cpp            :2984: 185480406807 us: [pid:1757  tid:0x7f4fa11ff700] Callback: Queue 0x7f4f98c00000 aborting with error : HSA_STATUS_ERROR_EXCEPTION: An HSAIL operation resulted in a hardware exception. code: 0x1016
:0:rocdevice.cpp            :2984: 185480408190 us: [pid:1756  tid:0x7f5517bff700] Callback: Queue 0x7f530ce00000 aborting with error : HSA_STATUS_ERROR_EXCEPTION: An HSAIL operation resulted in a hardware exception. code: 0x1016

Versions

Collecting environment information...
PyTorch version: 2.3.0a0+git96dd291
Is debug build: False
CUDA used to build PyTorch: N/A
ROCM used to build PyTorch: 6.2.41133-dd7f95766

OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: 18.0.0git (https://github.com/RadeonOpenCompute/llvm-project roc-6.2.0 24292 26466ce804ac523b398608f17388eb6d605a3f09)
CMake version: version 3.26.4
Libc version: glibc-2.31

Python version: 3.9.19 (main, May  6 2024, 19:43:03)  [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.13.0-35-generic-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: AMD Instinct MI250X/MI250 (gfx90a:sramecc+:xnack-)
Nvidia driver version: Could not collect
cuDNN version: Could not collect
HIP runtime version: 6.2.41133
MIOpen runtime version: 3.2.0
Is XNNPACK available: True

CPU:
Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Byte Order:                      Little Endian
Address sizes:                   48 bits physical, 48 bits virtual
CPU(s):                          96
On-line CPU(s) list:             0-95
Thread(s) per core:              2
Core(s) per socket:              24
Socket(s):                       2
NUMA node(s):                    2
Vendor ID:                       AuthenticAMD
CPU family:                      25
Model:                           1
Model name:                      AMD EPYC 7413 24-Core Processor
Stepping:                        1
Frequency boost:                 enabled
CPU MHz:                         1500.000
CPU max MHz:                     3630.8101
CPU min MHz:                     1500.0000
BogoMIPS:                        5289.81
Virtualization:                  AMD-V
L1d cache:                       1.5 MiB
L1i cache:                       1.5 MiB
L2 cache:                        24 MiB
L3 cache:                        256 MiB
NUMA node0 CPU(s):               0-23,48-71
NUMA node1 CPU(s):               24-47,72-95
Vulnerability Itlb multihit:     Not affected
Vulnerability L1tf:              Not affected
Vulnerability Mds:               Not affected
Vulnerability Meltdown:          Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:        Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:        Mitigation; LFENCE, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling
Vulnerability Srbds:             Not affected
Vulnerability Tsx async abort:   Not affected
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca

Versions of relevant libraries:
[pip3] mypy==1.8.0
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.20.3
[pip3] optree==0.9.1
[pip3] torch==2.3.0a0+git96dd291
[pip3] torchvision==0.18.0a0+68ba7ec
[pip3] triton==2.3.0
[conda] No relevant packages
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant