forked from MikeMcl/bignumber.js
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbignumber.d.ts
1829 lines (1721 loc) · 63.7 KB
/
bignumber.d.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Type definitions for bignumber.js >=8.1.0
// Project: https://github.com/MikeMcl/bignumber.js
// Definitions by: Michael Mclaughlin <https://github.com/MikeMcl>
// Definitions: https://github.com/MikeMcl/bignumber.js
// Documentation: http://mikemcl.github.io/bignumber.js/
//
// Exports:
//
// class BigNumber (default export)
// type BigNumber.Constructor
// type BigNumber.ModuloMode
// type BigNumber.RoundingMOde
// type BigNumber.Value
// interface BigNumber.Config
// interface BigNumber.Format
// interface BigNumber.Instance
//
// Example:
//
// import {BigNumber} from "bignumber.js"
// //import BigNumber from "bignumber.js"
//
// let rm: BigNumber.RoundingMode = BigNumber.ROUND_UP;
// let f: BigNumber.Format = { decimalSeparator: ',' };
// let c: BigNumber.Config = { DECIMAL_PLACES: 4, ROUNDING_MODE: rm, FORMAT: f };
// BigNumber.config(c);
//
// let v: BigNumber.Value = '12345.6789';
// let b: BigNumber = new BigNumber(v);
//
// The use of compiler option `--strictNullChecks` is recommended.
export default BigNumber;
export namespace BigNumber {
/** See `BigNumber.config` (alias `BigNumber.set`) and `BigNumber.clone`. */
interface Config {
/**
* An integer, 0 to 1e+9. Default value: 20.
*
* The maximum number of decimal places of the result of operations involving division, i.e.
* division, square root and base conversion operations, and exponentiation when the exponent is
* negative.
*
* ```ts
* BigNumber.config({ DECIMAL_PLACES: 5 })
* BigNumber.set({ DECIMAL_PLACES: 5 })
* ```
*/
DECIMAL_PLACES?: number;
/**
* An integer, 0 to 8. Default value: `BigNumber.ROUND_HALF_UP` (4).
*
* The rounding mode used in operations that involve division (see `DECIMAL_PLACES`) and the
* default rounding mode of the `decimalPlaces`, `precision`, `toExponential`, `toFixed`,
* `toFormat` and `toPrecision` methods.
*
* The modes are available as enumerated properties of the BigNumber constructor.
*
* ```ts
* BigNumber.config({ ROUNDING_MODE: 0 })
* BigNumber.set({ ROUNDING_MODE: BigNumber.ROUND_UP })
* ```
*/
ROUNDING_MODE?: BigNumber.RoundingMode;
/**
* An integer, 0 to 1e+9, or an array, [-1e+9 to 0, 0 to 1e+9].
* Default value: `[-7, 20]`.
*
* The exponent value(s) at which `toString` returns exponential notation.
*
* If a single number is assigned, the value is the exponent magnitude.
*
* If an array of two numbers is assigned then the first number is the negative exponent value at
* and beneath which exponential notation is used, and the second number is the positive exponent
* value at and above which exponential notation is used.
*
* For example, to emulate JavaScript numbers in terms of the exponent values at which they begin
* to use exponential notation, use `[-7, 20]`.
*
* ```ts
* BigNumber.config({ EXPONENTIAL_AT: 2 })
* new BigNumber(12.3) // '12.3' e is only 1
* new BigNumber(123) // '1.23e+2'
* new BigNumber(0.123) // '0.123' e is only -1
* new BigNumber(0.0123) // '1.23e-2'
*
* BigNumber.config({ EXPONENTIAL_AT: [-7, 20] })
* new BigNumber(123456789) // '123456789' e is only 8
* new BigNumber(0.000000123) // '1.23e-7'
*
* // Almost never return exponential notation:
* BigNumber.config({ EXPONENTIAL_AT: 1e+9 })
*
* // Always return exponential notation:
* BigNumber.config({ EXPONENTIAL_AT: 0 })
* ```
*
* Regardless of the value of `EXPONENTIAL_AT`, the `toFixed` method will always return a value in
* normal notation and the `toExponential` method will always return a value in exponential form.
* Calling `toString` with a base argument, e.g. `toString(10)`, will also always return normal
* notation.
*/
EXPONENTIAL_AT?: number | [number, number];
/**
* An integer, magnitude 1 to 1e+9, or an array, [-1e+9 to -1, 1 to 1e+9].
* Default value: `[-1e+9, 1e+9]`.
*
* The exponent value(s) beyond which overflow to Infinity and underflow to zero occurs.
*
* If a single number is assigned, it is the maximum exponent magnitude: values wth a positive
* exponent of greater magnitude become Infinity and those with a negative exponent of greater
* magnitude become zero.
*
* If an array of two numbers is assigned then the first number is the negative exponent limit and
* the second number is the positive exponent limit.
*
* For example, to emulate JavaScript numbers in terms of the exponent values at which they
* become zero and Infinity, use [-324, 308].
*
* ```ts
* BigNumber.config({ RANGE: 500 })
* BigNumber.config().RANGE // [ -500, 500 ]
* new BigNumber('9.999e499') // '9.999e+499'
* new BigNumber('1e500') // 'Infinity'
* new BigNumber('1e-499') // '1e-499'
* new BigNumber('1e-500') // '0'
*
* BigNumber.config({ RANGE: [-3, 4] })
* new BigNumber(99999) // '99999' e is only 4
* new BigNumber(100000) // 'Infinity' e is 5
* new BigNumber(0.001) // '0.01' e is only -3
* new BigNumber(0.0001) // '0' e is -4
* ```
* The largest possible magnitude of a finite BigNumber is 9.999...e+1000000000.
* The smallest possible magnitude of a non-zero BigNumber is 1e-1000000000.
*/
RANGE?: number | [number, number];
/**
* A boolean: `true` or `false`. Default value: `false`.
*
* The value that determines whether cryptographically-secure pseudo-random number generation is
* used. If `CRYPTO` is set to true then the random method will generate random digits using
* `crypto.getRandomValues` in browsers that support it, or `crypto.randomBytes` if using a
* version of Node.js that supports it.
*
* If neither function is supported by the host environment then attempting to set `CRYPTO` to
* `true` will fail and an exception will be thrown.
*
* If `CRYPTO` is `false` then the source of randomness used will be `Math.random` (which is
* assumed to generate at least 30 bits of randomness).
*
* See `BigNumber.random`.
*
* ```ts
* // Node.js
* global.crypto = require('crypto')
*
* BigNumber.config({ CRYPTO: true })
* BigNumber.config().CRYPTO // true
* BigNumber.random() // 0.54340758610486147524
* ```
*/
CRYPTO?: boolean;
/**
* An integer, 0, 1, 3, 6 or 9. Default value: `BigNumber.ROUND_DOWN` (1).
*
* The modulo mode used when calculating the modulus: `a mod n`.
* The quotient, `q = a / n`, is calculated according to the `ROUNDING_MODE` that corresponds to
* the chosen `MODULO_MODE`.
* The remainder, `r`, is calculated as: `r = a - n * q`.
*
* The modes that are most commonly used for the modulus/remainder operation are shown in the
* following table. Although the other rounding modes can be used, they may not give useful
* results.
*
* Property | Value | Description
* :------------------|:------|:------------------------------------------------------------------
* `ROUND_UP` | 0 | The remainder is positive if the dividend is negative.
* `ROUND_DOWN` | 1 | The remainder has the same sign as the dividend.
* | | Uses 'truncating division' and matches JavaScript's `%` operator .
* `ROUND_FLOOR` | 3 | The remainder has the same sign as the divisor.
* | | This matches Python's `%` operator.
* `ROUND_HALF_EVEN` | 6 | The IEEE 754 remainder function.
* `EUCLID` | 9 | The remainder is always positive.
* | | Euclidian division: `q = sign(n) * floor(a / abs(n))`
*
* The rounding/modulo modes are available as enumerated properties of the BigNumber constructor.
*
* See `modulo`.
*
* ```ts
* BigNumber.config({ MODULO_MODE: BigNumber.EUCLID })
* BigNumber.set({ MODULO_MODE: 9 }) // equivalent
* ```
*/
MODULO_MODE?: BigNumber.ModuloMode;
/**
* An integer, 0 to 1e+9. Default value: 0.
*
* The maximum precision, i.e. number of significant digits, of the result of the power operation
* - unless a modulus is specified.
*
* If set to 0, the number of significant digits will not be limited.
*
* See `exponentiatedBy`.
*
* ```ts
* BigNumber.config({ POW_PRECISION: 100 })
* ```
*/
POW_PRECISION?: number;
/**
* An object including any number of the properties shown below.
*
* The object configures the format of the string returned by the `toFormat` method.
* The example below shows the properties of the object that are recognised, and
* their default values.
*
* Unlike the other configuration properties, the values of the properties of the `FORMAT` object
* will not be checked for validity - the existing object will simply be replaced by the object
* that is passed in.
*
* See `toFormat`.
*
* ```ts
* BigNumber.config({
* FORMAT: {
* // string to prepend
* prefix: '',
* // the decimal separator
* decimalSeparator: '.',
* // the grouping separator of the integer part
* groupSeparator: ',',
* // the primary grouping size of the integer part
* groupSize: 3,
* // the secondary grouping size of the integer part
* secondaryGroupSize: 0,
* // the grouping separator of the fraction part
* fractionGroupSeparator: ' ',
* // the grouping size of the fraction part
* fractionGroupSize: 0,
* // string to append
* suffix: ''
* }
* })
* ```
*/
FORMAT?: BigNumber.Format;
/**
* The alphabet used for base conversion. The length of the alphabet corresponds to the maximum
* value of the base argument that can be passed to the BigNumber constructor or `toString`.
*
* Default value: `'0123456789abcdefghijklmnopqrstuvwxyz'`.
*
* There is no maximum length for the alphabet, but it must be at least 2 characters long,
* and it must not contain whitespace or a repeated character, or the sign indicators '+' and
* '-', or the decimal separator '.'.
*
* ```ts
* // duodecimal (base 12)
* BigNumber.config({ ALPHABET: '0123456789TE' })
* x = new BigNumber('T', 12)
* x.toString() // '10'
* x.toString(12) // 'T'
* ```
*/
ALPHABET?: string;
}
/** See `FORMAT` and `toFormat`. */
interface Format {
/** The string to prepend. */
prefix?: string;
/** The decimal separator. */
decimalSeparator?: string;
/** The grouping separator of the integer part. */
groupSeparator?: string;
/** The primary grouping size of the integer part. */
groupSize?: number;
/** The secondary grouping size of the integer part. */
secondaryGroupSize?: number;
/** The grouping separator of the fraction part. */
fractionGroupSeparator?: string;
/** The grouping size of the fraction part. */
fractionGroupSize?: number;
/** The string to append. */
suffix?: string;
}
interface Instance {
/** The coefficient of the value of this BigNumber, an array of base 1e14 integer numbers, or null. */
readonly c: number[] | null;
/** The exponent of the value of this BigNumber, an integer number, -1000000000 to 1000000000, or null. */
readonly e: number | null;
/** The sign of the value of this BigNumber, -1, 1, or null. */
readonly s: number | null;
[key: string]: any;
}
type Constructor = typeof BigNumber;
type ModuloMode = 0 | 1 | 3 | 6 | 9;
type RoundingMode = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8;
type Value = string | number | Instance;
}
export declare class BigNumber implements BigNumber.Instance {
/** Used internally to identify a BigNumber instance. */
private readonly _isBigNumber: true;
/** The coefficient of the value of this BigNumber, an array of base 1e14 integer numbers, or null. */
readonly c: number[] | null;
/** The exponent of the value of this BigNumber, an integer number, -1000000000 to 1000000000, or null. */
readonly e: number | null;
/** The sign of the value of this BigNumber, -1, 1, or null. */
readonly s: number | null;
/**
* Returns a new instance of a BigNumber object with value `n`, where `n` is a numeric value in
* the specified `base`, or base 10 if `base` is omitted or is `null` or `undefined`.
*
* ```ts
* x = new BigNumber(123.4567) // '123.4567'
* // 'new' is optional
* y = BigNumber(x) // '123.4567'
* ```
*
* If `n` is a base 10 value it can be in normal (fixed-point) or exponential notation.
* Values in other bases must be in normal notation. Values in any base can have fraction digits,
* i.e. digits after the decimal point.
*
* ```ts
* new BigNumber(43210) // '43210'
* new BigNumber('4.321e+4') // '43210'
* new BigNumber('-735.0918e-430') // '-7.350918e-428'
* new BigNumber('123412421.234324', 5) // '607236.557696'
* ```
*
* Signed `0`, signed `Infinity` and `NaN` are supported.
*
* ```ts
* new BigNumber('-Infinity') // '-Infinity'
* new BigNumber(NaN) // 'NaN'
* new BigNumber(-0) // '0'
* new BigNumber('.5') // '0.5'
* new BigNumber('+2') // '2'
* ```
*
* String values in hexadecimal literal form, e.g. `'0xff'`, are valid, as are string values with
* the octal and binary prefixs `'0o'` and `'0b'`. String values in octal literal form without the
* prefix will be interpreted as decimals, e.g. `'011'` is interpreted as 11, not 9.
*
* ```ts
* new BigNumber(-10110100.1, 2) // '-180.5'
* new BigNumber('-0b10110100.1') // '-180.5'
* new BigNumber('ff.8', 16) // '255.5'
* new BigNumber('0xff.8') // '255.5'
* ```
*
* If a base is specified, `n` is rounded according to the current `DECIMAL_PLACES` and
* `ROUNDING_MODE` settings. This includes base 10, so don't include a `base` parameter for decimal
* values unless this behaviour is desired.
*
* ```ts
* BigNumber.config({ DECIMAL_PLACES: 5 })
* new BigNumber(1.23456789) // '1.23456789'
* new BigNumber(1.23456789, 10) // '1.23457'
* ```
*
* An error is thrown if `base` is invalid.
*
* There is no limit to the number of digits of a value of type string (other than that of
* JavaScript's maximum array size). See `RANGE` to set the maximum and minimum possible exponent
* value of a BigNumber.
*
* ```ts
* new BigNumber('5032485723458348569331745.33434346346912144534543')
* new BigNumber('4.321e10000000')
* ```
*
* BigNumber `NaN` is returned if `n` is invalid (unless `BigNumber.DEBUG` is `true`, see below).
*
* ```ts
* new BigNumber('.1*') // 'NaN'
* new BigNumber('blurgh') // 'NaN'
* new BigNumber(9, 2) // 'NaN'
* ```
*
* To aid in debugging, if `BigNumber.DEBUG` is `true` then an error will be thrown on an
* invalid `n`. An error will also be thrown if `n` is of type number with more than 15
* significant digits, as calling `toString` or `valueOf` on these numbers may not result in the
* intended value.
*
* ```ts
* console.log(823456789123456.3) // 823456789123456.2
* new BigNumber(823456789123456.3) // '823456789123456.2'
* BigNumber.DEBUG = true
* // 'Error: Number has more than 15 significant digits'
* new BigNumber(823456789123456.3)
* // 'Error: Not a base 2 number'
* new BigNumber(9, 2)
* ```
*
* A BigNumber can also be created from an object literal.
* Use `isBigNumber` to check that it is well-formed.
*
* ```ts
* new BigNumber({ s: 1, e: 2, c: [ 777, 12300000000000 ], _isBigNumber: true }) // '777.123'
* ```
*
* @param n A numeric value.
* @param base The base of `n`, integer, 2 to 36 (or `ALPHABET.length`, see `ALPHABET`).
*/
constructor(n: BigNumber.Value, base?: number);
/**
* Returns a BigNumber whose value is the absolute value, i.e. the magnitude, of the value of this
* BigNumber.
*
* The return value is always exact and unrounded.
*
* ```ts
* x = new BigNumber(-0.8)
* x.absoluteValue() // '0.8'
* ```
*/
absoluteValue(): BigNumber;
/**
* Returns a BigNumber whose value is the absolute value, i.e. the magnitude, of the value of this
* BigNumber.
*
* The return value is always exact and unrounded.
*
* ```ts
* x = new BigNumber(-0.8)
* x.abs() // '0.8'
* ```
*/
abs(): BigNumber;
/**
* Returns | |
* :-------:|:--------------------------------------------------------------|
* 1 | If the value of this BigNumber is greater than the value of `n`
* -1 | If the value of this BigNumber is less than the value of `n`
* 0 | If this BigNumber and `n` have the same value
* `null` | If the value of either this BigNumber or `n` is `NaN`
*
* ```ts
*
* x = new BigNumber(Infinity)
* y = new BigNumber(5)
* x.comparedTo(y) // 1
* x.comparedTo(x.minus(1)) // 0
* y.comparedTo(NaN) // null
* y.comparedTo('110', 2) // -1
* ```
* @param n A numeric value.
* @param [base] The base of n.
*/
comparedTo(n: BigNumber.Value, base?: number): number;
/**
* Returns a BigNumber whose value is the value of this BigNumber rounded by rounding mode
* `roundingMode` to a maximum of `decimalPlaces` decimal places.
*
* If `decimalPlaces` is omitted, or is `null` or `undefined`, the return value is the number of
* decimal places of the value of this BigNumber, or `null` if the value of this BigNumber is
* ±`Infinity` or `NaN`.
*
* If `roundingMode` is omitted, or is `null` or `undefined`, `ROUNDING_MODE` is used.
*
* Throws if `decimalPlaces` or `roundingMode` is invalid.
*
* ```ts
* x = new BigNumber(1234.56)
* x.decimalPlaces() // 2
* x.decimalPlaces(1) // '1234.6'
* x.decimalPlaces(2) // '1234.56'
* x.decimalPlaces(10) // '1234.56'
* x.decimalPlaces(0, 1) // '1234'
* x.decimalPlaces(0, 6) // '1235'
* x.decimalPlaces(1, 1) // '1234.5'
* x.decimalPlaces(1, BigNumber.ROUND_HALF_EVEN) // '1234.6'
* x // '1234.56'
* y = new BigNumber('9.9e-101')
* y.decimalPlaces() // 102
* ```
*
* @param [decimalPlaces] Decimal places, integer, 0 to 1e+9.
* @param [roundingMode] Rounding mode, integer, 0 to 8.
*/
decimalPlaces(): number;
decimalPlaces(decimalPlaces: number, roundingMode?: BigNumber.RoundingMode): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber rounded by rounding mode
* `roundingMode` to a maximum of `decimalPlaces` decimal places.
*
* If `decimalPlaces` is omitted, or is `null` or `undefined`, the return value is the number of
* decimal places of the value of this BigNumber, or `null` if the value of this BigNumber is
* ±`Infinity` or `NaN`.
*
* If `roundingMode` is omitted, or is `null` or `undefined`, `ROUNDING_MODE` is used.
*
* Throws if `decimalPlaces` or `roundingMode` is invalid.
*
* ```ts
* x = new BigNumber(1234.56)
* x.dp() // 2
* x.dp(1) // '1234.6'
* x.dp(2) // '1234.56'
* x.dp(10) // '1234.56'
* x.dp(0, 1) // '1234'
* x.dp(0, 6) // '1235'
* x.dp(1, 1) // '1234.5'
* x.dp(1, BigNumber.ROUND_HALF_EVEN) // '1234.6'
* x // '1234.56'
* y = new BigNumber('9.9e-101')
* y.dp() // 102
* ```
*
* @param [decimalPlaces] Decimal places, integer, 0 to 1e+9.
* @param [roundingMode] Rounding mode, integer, 0 to 8.
*/
dp(): number;
dp(decimalPlaces: number, roundingMode?: BigNumber.RoundingMode): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber divided by `n`, rounded
* according to the current `DECIMAL_PLACES` and `ROUNDING_MODE` settings.
*
* ```ts
* x = new BigNumber(355)
* y = new BigNumber(113)
* x.dividedBy(y) // '3.14159292035398230088'
* x.dividedBy(5) // '71'
* x.dividedBy(47, 16) // '5'
* ```
*
* @param n A numeric value.
* @param [base] The base of n.
*/
dividedBy(n: BigNumber.Value, base?: number): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber divided by `n`, rounded
* according to the current `DECIMAL_PLACES` and `ROUNDING_MODE` settings.
*
* ```ts
* x = new BigNumber(355)
* y = new BigNumber(113)
* x.div(y) // '3.14159292035398230088'
* x.div(5) // '71'
* x.div(47, 16) // '5'
* ```
*
* @param n A numeric value.
* @param [base] The base of n.
*/
div(n: BigNumber.Value, base?: number): BigNumber;
/**
* Returns a BigNumber whose value is the integer part of dividing the value of this BigNumber by
* `n`.
*
* ```ts
* x = new BigNumber(5)
* y = new BigNumber(3)
* x.dividedToIntegerBy(y) // '1'
* x.dividedToIntegerBy(0.7) // '7'
* x.dividedToIntegerBy('0.f', 16) // '5'
* ```
*
* @param n A numeric value.
* @param [base] The base of n.
*/
dividedToIntegerBy(n: BigNumber.Value, base?: number): BigNumber;
/**
* Returns a BigNumber whose value is the integer part of dividing the value of this BigNumber by
* `n`.
*
* ```ts
* x = new BigNumber(5)
* y = new BigNumber(3)
* x.idiv(y) // '1'
* x.idiv(0.7) // '7'
* x.idiv('0.f', 16) // '5'
* ```
*
* @param n A numeric value.
* @param [base] The base of n.
*/
idiv(n: BigNumber.Value, base?: number): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber exponentiated by `n`, i.e.
* raised to the power `n`, and optionally modulo a modulus `m`.
*
* If `n` is negative the result is rounded according to the current `DECIMAL_PLACES` and
* `ROUNDING_MODE` settings.
*
* As the number of digits of the result of the power operation can grow so large so quickly,
* e.g. 123.456**10000 has over 50000 digits, the number of significant digits calculated is
* limited to the value of the `POW_PRECISION` setting (unless a modulus `m` is specified).
*
* By default `POW_PRECISION` is set to 0. This means that an unlimited number of significant
* digits will be calculated, and that the method's performance will decrease dramatically for
* larger exponents.
*
* If `m` is specified and the value of `m`, `n` and this BigNumber are integers and `n` is
* positive, then a fast modular exponentiation algorithm is used, otherwise the operation will
* be performed as `x.exponentiatedBy(n).modulo(m)` with a `POW_PRECISION` of 0.
*
* Throws if `n` is not an integer.
*
* ```ts
* Math.pow(0.7, 2) // 0.48999999999999994
* x = new BigNumber(0.7)
* x.exponentiatedBy(2) // '0.49'
* BigNumber(3).exponentiatedBy(-2) // '0.11111111111111111111'
* ```
*
* @param n The exponent, an integer.
* @param [m] The modulus.
*/
exponentiatedBy(n: BigNumber.Value, m?: BigNumber.Value): BigNumber;
exponentiatedBy(n: number, m?: BigNumber.Value): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber exponentiated by `n`, i.e.
* raised to the power `n`, and optionally modulo a modulus `m`.
*
* If `n` is negative the result is rounded according to the current `DECIMAL_PLACES` and
* `ROUNDING_MODE` settings.
*
* As the number of digits of the result of the power operation can grow so large so quickly,
* e.g. 123.456**10000 has over 50000 digits, the number of significant digits calculated is
* limited to the value of the `POW_PRECISION` setting (unless a modulus `m` is specified).
*
* By default `POW_PRECISION` is set to 0. This means that an unlimited number of significant
* digits will be calculated, and that the method's performance will decrease dramatically for
* larger exponents.
*
* If `m` is specified and the value of `m`, `n` and this BigNumber are integers and `n` is
* positive, then a fast modular exponentiation algorithm is used, otherwise the operation will
* be performed as `x.pow(n).modulo(m)` with a `POW_PRECISION` of 0.
*
* Throws if `n` is not an integer.
*
* ```ts
* Math.pow(0.7, 2) // 0.48999999999999994
* x = new BigNumber(0.7)
* x.pow(2) // '0.49'
* BigNumber(3).pow(-2) // '0.11111111111111111111'
* ```
*
* @param n The exponent, an integer.
* @param [m] The modulus.
*/
pow(n: BigNumber.Value, m?: BigNumber.Value): BigNumber;
pow(n: number, m?: BigNumber.Value): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber rounded to an integer using
* rounding mode `rm`.
*
* If `rm` is omitted, or is `null` or `undefined`, `ROUNDING_MODE` is used.
*
* Throws if `rm` is invalid.
*
* ```ts
* x = new BigNumber(123.456)
* x.integerValue() // '123'
* x.integerValue(BigNumber.ROUND_CEIL) // '124'
* y = new BigNumber(-12.7)
* y.integerValue() // '-13'
* x.integerValue(BigNumber.ROUND_DOWN) // '-12'
* ```
*
* @param {BigNumber.RoundingMode} [rm] The roundng mode, an integer, 0 to 8.
*/
integerValue(rm?: BigNumber.RoundingMode): BigNumber;
/**
* Returns `true` if the value of this BigNumber is equal to the value of `n`, otherwise returns
* `false`.
*
* As with JavaScript, `NaN` does not equal `NaN`.
*
* ```ts
* 0 === 1e-324 // true
* x = new BigNumber(0)
* x.isEqualTo('1e-324') // false
* BigNumber(-0).isEqualTo(x) // true ( -0 === 0 )
* BigNumber(255).isEqualTo('ff', 16) // true
*
* y = new BigNumber(NaN)
* y.isEqualTo(NaN) // false
* ```
*
* @param n A numeric value.
* @param [base] The base of n.
*/
isEqualTo(n: BigNumber.Value, base?: number): boolean;
/**
* Returns `true` if the value of this BigNumber is equal to the value of `n`, otherwise returns
* `false`.
*
* As with JavaScript, `NaN` does not equal `NaN`.
*
* ```ts
* 0 === 1e-324 // true
* x = new BigNumber(0)
* x.eq('1e-324') // false
* BigNumber(-0).eq(x) // true ( -0 === 0 )
* BigNumber(255).eq('ff', 16) // true
*
* y = new BigNumber(NaN)
* y.eq(NaN) // false
* ```
*
* @param n A numeric value.
* @param [base] The base of n.
*/
eq(n: BigNumber.Value, base?: number): boolean;
/**
* Returns `true` if the value of this BigNumber is a finite number, otherwise returns `false`.
*
* The only possible non-finite values of a BigNumber are `NaN`, `Infinity` and `-Infinity`.
*
* ```ts
* x = new BigNumber(1)
* x.isFinite() // true
* y = new BigNumber(Infinity)
* y.isFinite() // false
* ```
*/
isFinite(): boolean;
/**
* Returns `true` if the value of this BigNumber is greater than the value of `n`, otherwise
* returns `false`.
*
* ```ts
* 0.1 > (0.3 - 0.2) // true
* x = new BigNumber(0.1)
* x.isGreaterThan(BigNumber(0.3).minus(0.2)) // false
* BigNumber(0).isGreaterThan(x) // false
* BigNumber(11, 3).isGreaterThan(11.1, 2) // true
* ```
*
* @param n A numeric value.
* @param [base] The base of n.
*/
isGreaterThan(n: BigNumber.Value, base?: number): boolean;
/**
* Returns `true` if the value of this BigNumber is greater than the value of `n`, otherwise
* returns `false`.
*
* ```ts
* 0.1 > (0.3 - 0 // true
* x = new BigNumber(0.1)
* x.gt(BigNumber(0.3).minus(0.2)) // false
* BigNumber(0).gt(x) // false
* BigNumber(11, 3).gt(11.1, 2) // true
* ```
*
* @param n A numeric value.
* @param [base] The base of n.
*/
gt(n: BigNumber.Value, base?: number): boolean;
/**
* Returns `true` if the value of this BigNumber is greater than or equal to the value of `n`,
* otherwise returns `false`.
*
* ```ts
* (0.3 - 0.2) >= 0.1 // false
* x = new BigNumber(0.3).minus(0.2)
* x.isGreaterThanOrEqualTo(0.1) // true
* BigNumber(1).isGreaterThanOrEqualTo(x) // true
* BigNumber(10, 18).isGreaterThanOrEqualTo('i', 36) // true
* ```
*
* @param n A numeric value.
* @param [base] The base of n.
*/
isGreaterThanOrEqualTo(n: BigNumber.Value, base?: number): boolean;
/**
* Returns `true` if the value of this BigNumber is greater than or equal to the value of `n`,
* otherwise returns `false`.
*
* ```ts
* (0.3 - 0.2) >= 0.1 // false
* x = new BigNumber(0.3).minus(0.2)
* x.gte(0.1) // true
* BigNumber(1).gte(x) // true
* BigNumber(10, 18).gte('i', 36) // true
* ```
*
* @param n A numeric value.
* @param [base] The base of n.
*/
gte(n: BigNumber.Value, base?: number): boolean;
/**
* Returns `true` if the value of this BigNumber is an integer, otherwise returns `false`.
*
* ```ts
* x = new BigNumber(1)
* x.isInteger() // true
* y = new BigNumber(123.456)
* y.isInteger() // false
* ```
*/
isInteger(): boolean;
/**
* Returns `true` if the value of this BigNumber is less than the value of `n`, otherwise returns
* `false`.
*
* ```ts
* (0.3 - 0.2) < 0.1 // true
* x = new BigNumber(0.3).minus(0.2)
* x.isLessThan(0.1) // false
* BigNumber(0).isLessThan(x) // true
* BigNumber(11.1, 2).isLessThan(11, 3) // true
* ```
*
* @param n A numeric value.
* @param [base] The base of n.
*/
isLessThan(n: BigNumber.Value, base?: number): boolean;
/**
* Returns `true` if the value of this BigNumber is less than the value of `n`, otherwise returns
* `false`.
*
* ```ts
* (0.3 - 0.2) < 0.1 // true
* x = new BigNumber(0.3).minus(0.2)
* x.lt(0.1) // false
* BigNumber(0).lt(x) // true
* BigNumber(11.1, 2).lt(11, 3) // true
* ```
*
* @param n A numeric value.
* @param [base] The base of n.
*/
lt(n: BigNumber.Value, base?: number): boolean;
/**
* Returns `true` if the value of this BigNumber is less than or equal to the value of `n`,
* otherwise returns `false`.
*
* ```ts
* 0.1 <= (0.3 - 0.2) // false
* x = new BigNumber(0.1)
* x.isLessThanOrEqualTo(BigNumber(0.3).minus(0.2)) // true
* BigNumber(-1).isLessThanOrEqualTo(x) // true
* BigNumber(10, 18).isLessThanOrEqualTo('i', 36) // true
* ```
*
* @param n A numeric value.
* @param [base] The base of n.
*/
isLessThanOrEqualTo(n: BigNumber.Value, base?: number): boolean;
/**
* Returns `true` if the value of this BigNumber is less than or equal to the value of `n`,
* otherwise returns `false`.
*
* ```ts
* 0.1 <= (0.3 - 0.2) // false
* x = new BigNumber(0.1)
* x.lte(BigNumber(0.3).minus(0.2)) // true
* BigNumber(-1).lte(x) // true
* BigNumber(10, 18).lte('i', 36) // true
* ```
*
* @param n A numeric value.
* @param [base] The base of n.
*/
lte(n: BigNumber.Value, base?: number): boolean;
/**
* Returns `true` if the value of this BigNumber is `NaN`, otherwise returns `false`.
*
* ```ts
* x = new BigNumber(NaN)
* x.isNaN() // true
* y = new BigNumber('Infinity')
* y.isNaN() // false
* ```
*/
isNaN(): boolean;
/**
* Returns `true` if the value of this BigNumber is negative, otherwise returns `false`.
*
* ```ts
* x = new BigNumber(-0)
* x.isNegative() // true
* y = new BigNumber(2)
* y.isNegative() // false
* ```
*/
isNegative(): boolean;
/**
* Returns `true` if the value of this BigNumber is positive, otherwise returns `false`.
*
* ```ts
* x = new BigNumber(-0)
* x.isPositive() // false
* y = new BigNumber(2)
* y.isPositive() // true
* ```
*/
isPositive(): boolean;
/**
* Returns `true` if the value of this BigNumber is zero or minus zero, otherwise returns `false`.
*
* ```ts
* x = new BigNumber(-0)
* x.isZero() // true
* ```
*/
isZero(): boolean;
/**
* Returns a BigNumber whose value is the value of this BigNumber minus `n`.
*
* The return value is always exact and unrounded.
*
* ```ts
* 0.3 - 0.1 // 0.19999999999999998
* x = new BigNumber(0.3)
* x.minus(0.1) // '0.2'
* x.minus(0.6, 20) // '0'
* ```
*
* @param n A numeric value.
* @param [base] The base of n.
*/
minus(n: BigNumber.Value, base?: number): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber modulo `n`, i.e. the integer
* remainder of dividing this BigNumber by `n`.
*
* The value returned, and in particular its sign, is dependent on the value of the `MODULO_MODE`
* setting of this BigNumber constructor. If it is 1 (default value), the result will have the
* same sign as this BigNumber, and it will match that of Javascript's `%` operator (within the
* limits of double precision) and BigDecimal's `remainder` method.
*
* The return value is always exact and unrounded.
*
* See `MODULO_MODE` for a description of the other modulo modes.
*
* ```ts
* 1 % 0.9 // 0.09999999999999998
* x = new BigNumber(1)
* x.modulo(0.9) // '0.1'
* y = new BigNumber(33)
* y.modulo('a', 33) // '3'