-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInjuryModel5.9.stan
executable file
·158 lines (138 loc) · 7.07 KB
/
InjuryModel5.9.stan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
//Copyright (C) 2021 The RAND Corporation
//This code is licensed under the GPLv3 or later
//
//InjuryModel5.9.stan
//
// Last update: September 7, 2020
// Authors: Andrew R Morral
//
// Description: Full Bayes imputation of missing state-year firearm injury hospital
// discharges, with imputation of missing predictors of those discharges
//
//
// Note on missing value indices: Each missing value index below has the same length
// as the data. The index is all 0's, except for those positions where the indexed
// variable has a missing value. In those positions, sequential positive numbers are
// inserted. So a missing variable index length 10 with 4 missing values might look
// like: (0,1,0,0,2,0,3,4,0,0).
functions {
//replace missing values (999) in data matrix with parameters
matrix merge_missingM( int[,] miss_indexes , matrix x_obs , vector x_miss ) {
int N = dims(x_obs)[1];
int P = dims(x_obs)[2];
int counter = 1;
matrix [N,P] merged;
merged = x_obs;
for ( i in 1:P ){
if (sum(miss_indexes[,i])>0){
for ( j in 1:N ){
if( miss_indexes[j,i] > 0 ) {
merged[j,i] = x_miss[ counter ];
counter = counter + 1;
}
}
}
}
return merged;
}
}
data {
int<lower=0> num_data; //Number of observations in dataset
int<lower=0> num_pred; //Number of predictor variables
int<lower=0> num_year; //Number of years of data
int<lower=0> num_state; //Number of states
int<lower=0> num_int; //Number of interaction terms
matrix[num_data,1] Discharges; //Outcome variable
int DissMiss[num_data,1]; //Index of missing outcome variables
matrix[num_data,num_pred] Pred; //Matrix with predictors
int PredMiss[num_data,num_pred]; //Predictor missing values indices array
int year_index[num_data]; //Year index
int state_index[num_data]; //State index
int state_year_index[num_year,num_state]; //State-year index
int<lower=0> int_mat[num_int,2]; //Matrix of interacted variables w/missing
matrix<lower=0>[num_year,num_state] popinv; //Inverse of population
matrix<lower=0>[num_data,1] completeness; //Completeness of injury coding
int CompMiss[num_data,1]; //Completeness missing value index
}
transformed data{
vector[num_pred] mu = rep_vector( 0, num_pred); //Prior for mean predictor value
vector[num_year] mu_c = rep_vector( .9, num_year);//Prior for mean completeness value
int<lower=0> miss_count = 0;
real<lower=0> yrs[num_year];
for (i in 1:num_year)
yrs[i] = i; //Year number
for (i in 1:num_pred)
miss_count += max(PredMiss[,i]); //Count of missing predictors
}
parameters {
real<lower=0> beta0; //Discharge model intercept
vector[num_pred] betaPred; //Predictor coefficients
vector[num_int] betaInt; //Interactions coefficients
real<lower=0> hyper; //hyperparam for betas priors
vector<lower=0,upper=1>[num_state] d; //Proportion uncoded injuries that are FA
real<lower=0> a; //hyperparam for beta dist for d
real<lower=0> b; //hyperparam for beta dist for d
vector<lower=0>[max(DissMiss[,1])] Diss_impute; //Outcome missing value params
vector[miss_count] Pred_impute; //Predictor missing value params
vector<lower=0,upper=1>[max(CompMiss[,1])] Comp_impute; //Completeness missing val params
corr_matrix[num_pred] gamma; //Prior corr'n between predictors
real<lower=0> etasq; //max correlation parameter: discharges
real<lower=0> rhosq; //decay rate: discharge corr's
real<lower=0> etasq_c; //max correlation parameter: completeness
real<lower=0> rhosq_c; //decay rate: completeness corr's
real<lower=0> covPrior; //hyperprior for pred covariance shape
real<lower=0> se; //param controlling pop effects on cov mat
}
transformed parameters{
matrix[num_data,1] Diss_hat; //Prior for missing discharge values
matrix<lower=0>[num_data,1] Diss_merge; //Discharge w/missing val parameters merged
matrix<lower=0,upper=1>[num_data,1] Comp_merge; //Completeness w/missing val params merged
matrix[num_data,num_pred] Pred_merge; //Pred matrix with missing val params merged
matrix[num_data,num_int] interactions; //Interaction terms
//Merge missing value parameters:
Diss_merge = merge_missingM( DissMiss, Discharges, Diss_impute );
Comp_merge = merge_missingM( CompMiss, completeness, Comp_impute );
Pred_merge = merge_missingM( PredMiss, Pred, Pred_impute );
for ( i in 1:num_int){ //Create interaction terms
interactions[,i] = Pred_merge[,int_mat[i,1]] .* Pred_merge[,int_mat[i,2]];
interactions[,i] = interactions[,i] - mean(interactions[,i]);
}
for (i in 1:num_data){ //Model of expected observed discharge rate
Diss_hat[i] = ( beta0 + Pred_merge[i,]*betaPred + interactions[i,]*betaInt ) *
( 1- d[state_index[i]] * (1 - Comp_merge[i]) ) ;
}
}
model {
matrix[num_year,num_year] L_K; // Cholesky decomposition of discharge covariance matrix
matrix[num_year,num_year] L_K_c; // Cholesky decomposition of completeness covariance matrix
matrix[num_year,num_year] SIGMA = cov_exp_quad( yrs[], etasq, rhosq); //Discharge covariance matrix
matrix[num_year,num_year] SIGMA_c = cov_exp_quad( yrs[], etasq_c, rhosq_c); //Completeness covariance matrix
vector[num_year] Diag; // Vector used to retain diagonal of SIGMA
hyper ~ normal(0,.5); // hyperparam for beta priors
beta0 ~ normal(0,hyper); // model intercept
betaPred ~ normal(0,hyper); // coefficients main effects
betaInt ~ normal(0,hyper); // coefficients interaction terms
etasq ~ std_normal(); // prior on max correlation between years
rhosq ~ inv_gamma(5,5); // prior on decay rate
etasq_c ~ std_normal(); // prior on max correlation between years
rhosq_c ~ inv_gamma(5,5); // prior on decay rate
gamma ~ lkj_corr(covPrior); // prior for predictor covariance matrix
covPrior ~ normal(1,2); // prior for lkj_corr shape parameter
se ~ normal(0,.5); // prior for inv_pop effect on discharge variance
d ~ beta(a,b); // prior for effect of completeness on observed d/c rate
a ~ gamma(2,1); // hyperprior for d
b ~ gamma(2,1); // hyperprior for d
for ( m in 1:num_data ) // likelihood/prior for predictor observations/paramters
Pred_merge[m,] ~ multi_normal( mu, gamma ); //centered at 0 b/c normalized
L_K_c = cholesky_decompose(SIGMA_c);
Diag = diagonal(SIGMA);
for ( k in 1:num_state){
for ( m in 1:num_year )
SIGMA[m,m] = Diag[m] + se * popinv[m,k];
L_K = cholesky_decompose(SIGMA);
Diss_merge[state_year_index[,k],1] ~ // likelihood/prior for discharge obs/params
multi_normal_cholesky( Diss_hat[state_year_index[,k],1], L_K );
Comp_merge[state_year_index[,k],1] ~ // likelihood/prior for completeness obs/params
multi_normal_cholesky( mu_c, L_K_c );
}
}