-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_yz003.py
471 lines (409 loc) · 20.8 KB
/
train_yz003.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
from __future__ import print_function
import argparse
import os
import sys
import random
import math
import shutil
import torch
import torch.nn.parallel
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torch.utils.data
from tensorboardX import SummaryWriter # https://github.com/lanpa/tensorboard-pytorch
import utils
from dataset_our import PointcloudPatchDataset, RandomPointcloudPatchSampler, SequentialShapeRandomPointcloudPatchSampler
from pcp_yz003 import PCPNet, MSPCPNet
import numpy as np
import cv2
from skimage.measure import label, regionprops
from matplotlib import pyplot as plt
def parse_arguments():
parser = argparse.ArgumentParser()
# naming / file handling
parser.add_argument('--name', type=str, default='my_single_scale_normal', help='training run name')
parser.add_argument('--desc', type=str, default='My training run for single-scale normal estimation.',
help='description')
parser.add_argument('--indir', type=str, default='./pclouds', help='input folder (point clouds)')
parser.add_argument('--outdir', type=str, default='./models', help='output folder (trained models)')
parser.add_argument('--logdir', type=str, default='./logs', help='training log folder')
parser.add_argument('--trainset', type=str, default='trainingset_whitenoise.txt', help='training set file name')
parser.add_argument('--testset', type=str, default='validationset_whitenoise.txt', help='test set file name')
parser.add_argument('--saveinterval', type=int, default='5', help='save model each n epochs')
parser.add_argument('--refine', type=str, default='',
help='refine model at this path')
parser.add_argument('--gpu_idx', type=int, default=0, help='set < 0 to use CPU')
# training parameters
parser.add_argument('--nepoch', type=int, default=2000, help='number of epochs to train for')
parser.add_argument('--batchSize', type=int, default=64, help='input batch size')
parser.add_argument('--patch_radius', type=float, default=[0.05], nargs='+',
help='patch radius in multiples of the shape\'s bounding box diagonal, multiple values for multi-scale.')
parser.add_argument('--patch_center', type=str, default='point', help='center patch at...\n'
'point: center point\n'
'mean: patch mean')
parser.add_argument('--patch_point_count_std', type=float, default=0,
help='standard deviation of the number of points in a patch')
parser.add_argument('--patches_per_shape', type=int, default=1000,
help='number of patches sampled from each shape in an epoch')
parser.add_argument('--workers', type=int, default=0,
help='number of data loading workers - 0 means same thread as main execution')
parser.add_argument('--cache_capacity', type=int, default=100,
help='Max. number of dataset elements (usually shapes) to hold in the cache at the same time.')
parser.add_argument('--seed', type=int, default=3627473, help='manual seed')
parser.add_argument('--training_order', type=str, default='random',
help='order in which the training patches are presented:\n'
'random: fully random over the entire dataset (the set of all patches is permuted)\n'
'random_shape_consecutive: random over the entire dataset, but patches of a shape remain consecutive (shapes and patches inside a shape are permuted)')
parser.add_argument('--identical_epochs', type=int, default=False,
help='use same patches in each epoch, mainly for debugging')
parser.add_argument('--lr', type=float, default=0.001, help='learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='gradient descent momentum')
parser.add_argument('--use_pca', type=int, default=False,
help='Give both inputs and ground truth in local PCA coordinate frame')
parser.add_argument('--normal_loss', type=str, default='ms_euclidean', help='Normal loss type:\n'
'ms_euclidean: mean square euclidean distance\n'
'ms_oneminuscos: mean square 1-cos(angle error)')
# model hyperparameters
parser.add_argument('--outputs', type=str, nargs='+', default=['unoriented_normals'],
help='outputs of the network, a list with elements of:\n'
'unoriented_normals: unoriented (flip-invariant) point normals\n'
'oriented_normals: oriented point normals\n'
'max_curvature: maximum curvature\n'
'min_curvature: mininum curvature')
parser.add_argument('--use_point_stn', type=int, default=True, help='use point spatial transformer')
parser.add_argument('--use_feat_stn', type=int, default=True, help='use feature spatial transformer')
parser.add_argument('--sym_op', type=str, default='max', help='symmetry operation')
parser.add_argument('--point_tuple', type=int, default=1,
help='use n-tuples of points as input instead of single points')
parser.add_argument('--points_per_patch', type=int, default=500, help='max. number of points per patch')
return parser.parse_args()
def train_pcpnet(opt):
# opt.gpu_idx = "1,2,3"
os.environ['CUDA_VISIBLE_DEVICES'] = '3' # 这里的赋值必须是字符串,list会报错
# device_ids = range(torch.cuda.device_count())
device = torch.device("cpu" if opt.gpu_idx < 0 else "cuda:%d" % opt.gpu_idx)
# colored console output
green = lambda x: '\033[92m' + x + '\033[0m'
blue = lambda x: '\033[94m' + x + '\033[0m'
log_dirname = os.path.join(opt.logdir, opt.name)
params_filename = os.path.join(opt.outdir, '%s_stnmlp003_params.pth' % (opt.name))
model_filename = os.path.join(opt.outdir, '%s_stnmlp003_model.pth' % (opt.name))
desc_filename = os.path.join(opt.outdir, '%s_stnmlp003_description.txt' % (opt.name))
if os.path.exists(log_dirname) or os.path.exists(model_filename):
# response = input('A training run named "%s" already exists, overwrite? (y/n) ' % (opt.name))
response = 'y'
if response == 'y':
if os.path.exists(log_dirname):
shutil.rmtree(os.path.join(opt.logdir, opt.name))
else:
sys.exit()
# get indices in targets and predictions corresponding to each output
target_features = []
output_target_ind = []
output_pred_ind = []
output_loss_weight = []
pred_dim = 0
for o in opt.outputs:
if o == 'unoriented_normals' or o == 'oriented_normals':
if 'normal' not in target_features:
target_features.append('normal')
output_target_ind.append(target_features.index('normal'))
output_pred_ind.append(pred_dim)
output_loss_weight.append(1.0)
pred_dim += 3
elif o == 'max_curvature' or o == 'min_curvature':
if o not in target_features:
target_features.append(o)
output_target_ind.append(target_features.index(o))
output_pred_ind.append(pred_dim)
if o == 'max_curvature':
output_loss_weight.append(0.7)
else:
output_loss_weight.append(0.3)
pred_dim += 1
else:
raise ValueError('Unknown output: %s' % (o))
if pred_dim <= 0:
raise ValueError('Prediction is empty for the given outputs.')
# create model
if len(opt.patch_radius) == 1:
pcpnet = PCPNet(
num_points=opt.points_per_patch,
output_dim=pred_dim,
use_point_stn=opt.use_point_stn,
use_feat_stn=opt.use_feat_stn,
sym_op=opt.sym_op,
point_tuple=opt.point_tuple)
else:
pcpnet = MSPCPNet(
num_scales=len(opt.patch_radius),
num_points=opt.points_per_patch,
output_dim=pred_dim,
use_point_stn=opt.use_point_stn,
use_feat_stn=opt.use_feat_stn,
sym_op=opt.sym_op,
point_tuple=opt.point_tuple)
if opt.refine != '':
pcpnet.load_state_dict(torch.load(opt.refine))
if opt.seed < 0:
opt.seed = random.randint(1, 10000)
print("Random Seed: %d" % (opt.seed))
random.seed(opt.seed)
torch.manual_seed(opt.seed)
# create train and test dataset loaders
train_dataset = PointcloudPatchDataset(
root=opt.indir,
shape_list_filename=opt.trainset,
patch_radius=opt.patch_radius,
points_per_patch=opt.points_per_patch,
patch_features=target_features,
point_count_std=opt.patch_point_count_std,
seed=opt.seed,
identical_epochs=opt.identical_epochs,
use_pca=opt.use_pca,
center=opt.patch_center,
point_tuple=opt.point_tuple,
cache_capacity=opt.cache_capacity)
if opt.training_order == 'random':
train_datasampler = RandomPointcloudPatchSampler(
train_dataset,
patches_per_shape=opt.patches_per_shape,
seed=opt.seed,
identical_epochs=opt.identical_epochs)
elif opt.training_order == 'random_shape_consecutive':
train_datasampler = SequentialShapeRandomPointcloudPatchSampler(
train_dataset,
patches_per_shape=opt.patches_per_shape,
seed=opt.seed,
identical_epochs=opt.identical_epochs)
else:
raise ValueError('Unknown training order: %s' % (opt.training_order))
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
sampler=train_datasampler,
batch_size=opt.batchSize,
num_workers=int(opt.workers),
drop_last=True)
M = 33
vec = np.arange(M)
col, row = np.meshgrid(vec, vec)
grid_index = np.stack((row.reshape(-1), col.reshape(-1)), axis=1) + 1
grid_coord = grid_index / M - 1 / (2 * M)
grid_coord = torch.from_numpy(grid_coord).cuda()
grid_norm = torch.as_tensor(torch.zeros(opt.batchSize, grid_coord.shape[0], 3), dtype=torch.float32).cuda()
index = []
index_null = []
for i, coord in enumerate(grid_coord):
nx, ny = 2 * coord[0] - 1, 2 * coord[1] - 1
if nx ** 2 + ny ** 2 <= 1:
nz = torch.sqrt(1 - (nx ** 2 + ny ** 2))
grid_norm[:, i, :] = torch.Tensor([nx, ny, nz])
index.append(i)
else:
grid_norm[:, i, :] = torch.Tensor([100, 100, 100])
index_null.append(i)
index_null = torch.tensor(index_null)
weight_null = torch.ones(M ** 2, opt.points_per_patch).cuda()
weight_null[index_null, :] = 0
index_del = torch.ones(opt.batchSize, M ** 2).cuda()
index_del[:, index_null] = 0
index_del = index_del.reshape(opt.batchSize, M, M)
test_dataset = PointcloudPatchDataset(
root=opt.indir,
shape_list_filename=opt.testset,
patch_radius=opt.patch_radius,
points_per_patch=opt.points_per_patch,
patch_features=target_features,
point_count_std=opt.patch_point_count_std,
seed=opt.seed,
identical_epochs=opt.identical_epochs,
use_pca=opt.use_pca,
center=opt.patch_center,
point_tuple=opt.point_tuple,
cache_capacity=opt.cache_capacity)
if opt.training_order == 'random':
test_datasampler = RandomPointcloudPatchSampler(
test_dataset,
patches_per_shape=opt.patches_per_shape,
seed=opt.seed,
identical_epochs=opt.identical_epochs)
elif opt.training_order == 'random_shape_consecutive':
test_datasampler = SequentialShapeRandomPointcloudPatchSampler(
test_dataset,
patches_per_shape=opt.patches_per_shape,
seed=opt.seed,
identical_epochs=opt.identical_epochs)
else:
raise ValueError('Unknown training order: %s' % (opt.training_order))
test_dataloader = torch.utils.data.DataLoader(
test_dataset,
sampler=test_datasampler,
batch_size=opt.batchSize,
num_workers=int(opt.workers),
drop_last=True)
# keep the exact training shape names for later reference
opt.train_shapes = train_dataset.shape_names
opt.test_shapes = test_dataset.shape_names
print('training set: %d patches (in %d batches) - test set: %d patches (in %d batches)' %
(len(train_datasampler), len(train_dataloader), len(test_datasampler), len(test_dataloader)))
try:
os.makedirs(opt.outdir)
except OSError:
pass
train_writer = SummaryWriter(os.path.join(log_dirname, 'train'))
test_writer = SummaryWriter(os.path.join(log_dirname, 'test'))
optimizer = optim.SGD(pcpnet.parameters(), lr=opt.lr, momentum=opt.momentum)
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[],
gamma=0.1) # milestones in number of optimizer iterations
# pcpnet.to(device)
pcpnet = pcpnet.cuda()
train_num_batch = len(train_dataloader)
test_num_batch = len(test_dataloader)
# save parameters
torch.save(opt, params_filename)
# save description
with open(desc_filename, 'w+') as text_file:
print(opt.desc, file=text_file)
for epoch in range(opt.nepoch):
train_batchind = -1
train_fraction_done = 0.0
train_enum = enumerate(train_dataloader, 0)
test_batchind = -1
test_fraction_done = 0.0
test_enum = enumerate(test_dataloader, 0)
for train_batchind, data in train_enum:
# update learning rate
scheduler.step(epoch * train_num_batch + train_batchind)
# set to training mode
pcpnet.train()
# get trainingset batch and upload to GPU
points = data[0]
points = points.transpose(2, 1)
points = points.cuda()
targetc = data[1].cuda()
optimizer.zero_grad()
pred, _, _, trans, _, _ = pcpnet(grid_norm, weight_null, points, targetc, M)
loss = compute_loss(
pred=pred, target=targetc,
outputs=opt.outputs,
output_pred_ind=output_pred_ind,
output_target_ind=output_target_ind,
output_loss_weight=output_loss_weight,
patch_rot=trans if opt.use_point_stn else None,
normal_loss=opt.normal_loss)
loss.backward()
# parameter optimization step
optimizer.step()
train_fraction_done = (train_batchind + 1) / train_num_batch
# print info and update log file
print('[%s %d: %d/%d] %s loss: %f' % (
opt.name, epoch, train_batchind, train_num_batch - 1, green('train'), loss.item()))
train_writer.add_scalar('loss', loss.item(),
(epoch + train_fraction_done) * train_num_batch * opt.batchSize)
# while 0:
while test_fraction_done <= train_fraction_done and test_batchind + 1 < test_num_batch:
# set to evaluation mode
pcpnet.eval()
test_batchind, data = next(test_enum)
# get testset batch and upload to GPU
points = data[0]
points = points.transpose(2, 1)
points = points.cuda()
targetc = data[1].cuda()
# forward pass
with torch.no_grad():
# pred_map, trans, _, _ = pcpnet(points, weight, M)
# pred_map, _, _, trans, _, _ = pcpnet(grid_norm, weight_null, points, None, M)
pred, _, _, trans, _, _ = pcpnet(grid_norm, weight_null, points, targetc, M)
# key_points = torch.sigmoid(pred_map)
# key_points = key_points * index_del
# pred = reverse_mapping(key_points, grid_norm[0, :, :])
# tt = (dist < 0.01).type(torch.uint8)
# num = tt.sum(axis=-1)
# num[:, index_null] = 0
# point_num = num.reshape(opt.batchSize, M, M)
# point_num = point_num.cpu().numpy()
# uu=35
# t1 = key_points[uu, :, :].detach().cpu().numpy()
# t2 = normal_map[uu, :, :].detach().cpu().numpy()
# np.savetxt('points.txt',data[0][uu,:,:].numpy())
# np.savetxt('normal_map.txt', np.flipud(t2))
# np.savetxt('pred_map.txt', np.flipud(t1))
# np.savetxt('pointnum.txt',np.flipud(point_num[uu,:,:]),fmt='%s')
loss_norm = compute_loss(
pred=pred, target=targetc,
outputs=opt.outputs,
output_pred_ind=output_pred_ind,
output_target_ind=output_target_ind,
output_loss_weight=output_loss_weight,
patch_rot=trans if opt.use_point_stn else None,
normal_loss=opt.normal_loss)
test_fraction_done = (test_batchind + 1) / test_num_batch
# print info and update log file
print('[%s %d: %d/%d] %s loss: %f' % (
opt.name, epoch, train_batchind, train_num_batch - 1, blue('test'), loss_norm.item()))
test_writer.add_scalar('loss', loss.item(),
(epoch + test_fraction_done) * train_num_batch * opt.batchSize)
if epoch % opt.saveinterval == 0 or epoch == opt.nepoch - 1:
torch.save(pcpnet.state_dict(), model_filename)
def norm_to_grid(norm, B, M):
grid = torch.zeros(B, M, M)
x, y = (norm[:, 0] + 1) * M / 2, (norm[:, 1] + 1) * M / 2
ind_x, ind_y = x.floor().type(torch.long), y.floor().type(torch.long)
ind_x[torch.where(ind_x >= M)] = M - 1
ind_y[torch.where(ind_y >= M)] = M - 1
grid[torch.arange(0, B), ind_x, ind_y] = 1
grid = grid.numpy()
for i in torch.arange(0, B):
grid[i, ...] = cv2.GaussianBlur(grid[i, ...], (3, 3), 0)
grid[i, ...] = (grid[i, ...] / np.max(grid[i, ...]))
return torch.from_numpy(grid)
def reverse_mapping(pred_map, norm):
B = pred_map.shape[0]
index = []
for i in torch.arange(0, B):
ind = torch.argmax(pred_map[i, :, :])
index.append(ind)
pre = norm[index, :]
return pre
def compute_loss(pred, target, outputs, output_pred_ind, output_target_ind, output_loss_weight, patch_rot, normal_loss):
loss = 0
for oi, o in enumerate(outputs):
if o == 'unoriented_normals' or o == 'oriented_normals':
# o_pred = pred[:, output_pred_ind[oi]:output_pred_ind[oi] + 3]
# o_target = target[output_target_ind[oi]]
o_pred = pred
o_target = target
if patch_rot is not None:
# transform predictions with inverse transform
# since we know the transform to be a rotation (QSTN), the transpose is the inverse
o_pred = torch.bmm(o_pred.unsqueeze(1), patch_rot.transpose(2, 1)).squeeze(1)
if o == 'unoriented_normals':
if normal_loss == 'ms_euclidean':
loss += torch.min((o_pred - o_target).pow(2).sum(1), (o_pred + o_target).pow(2).sum(1)).mean() * \
output_loss_weight[oi]
elif normal_loss == 'ms_oneminuscos':
loss += (1 - torch.abs(utils.cos_angle(o_pred, o_target))).pow(2).mean() * output_loss_weight[oi]
else:
raise ValueError('Unsupported loss type: %s' % (normal_loss))
elif o == 'oriented_normals':
if normal_loss == 'ms_euclidean':
loss += (o_pred - o_target).pow(2).sum(1).mean() * output_loss_weight[oi]
elif normal_loss == 'ms_oneminuscos':
loss += (1 - utils.cos_angle(o_pred, o_target)).pow(2).mean() * output_loss_weight[oi]
else:
raise ValueError('Unsupported loss type: %s' % (normal_loss))
else:
raise ValueError('Unsupported output type: %s' % (o))
elif o == 'max_curvature' or o == 'min_curvature':
o_pred = pred[:, output_pred_ind[oi]:output_pred_ind[oi] + 1]
o_target = target[output_target_ind[oi]]
# Rectified mse loss: mean square of (pred - gt) / max(1, |gt|)
normalized_diff = (o_pred - o_target) / torch.clamp(torch.abs(o_target), min=1)
loss += normalized_diff.pow(2).mean() * output_loss_weight[oi]
else:
raise ValueError('Unsupported output type: %s' % (o))
return loss
if __name__ == '__main__':
train_opt = parse_arguments()
train_pcpnet(train_opt)