-
Notifications
You must be signed in to change notification settings - Fork 322
/
tester_Semantic3D.py
147 lines (114 loc) · 5.67 KB
/
tester_Semantic3D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from os import makedirs
from os.path import exists, join
from helper_ply import read_ply, write_ply
import tensorflow as tf
import numpy as np
import time
def log_string(out_str, log_out):
log_out.write(out_str + '\n')
log_out.flush()
print(out_str)
class ModelTester:
def __init__(self, model, dataset, restore_snap=None):
# Tensorflow Saver definition
my_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
self.saver = tf.train.Saver(my_vars, max_to_keep=100)
# Create a session for running Ops on the Graph.
on_cpu = False
if on_cpu:
c_proto = tf.ConfigProto(device_count={'GPU': 0})
else:
c_proto = tf.ConfigProto()
c_proto.gpu_options.allow_growth = True
self.sess = tf.Session(config=c_proto)
self.sess.run(tf.global_variables_initializer())
if restore_snap is not None:
self.saver.restore(self.sess, restore_snap)
print("Model restored from " + restore_snap)
# Add a softmax operation for predictions
self.prob_logits = tf.nn.softmax(model.logits)
self.test_probs = [np.zeros((l.data.shape[0], model.config.num_classes), dtype=np.float16)
for l in dataset.input_trees['test']]
self.log_out = open('log_test_' + dataset.name + '.txt', 'a')
def test(self, model, dataset, num_votes=100):
# Smoothing parameter for votes
test_smooth = 0.98
# Initialise iterator with train data
self.sess.run(dataset.test_init_op)
# Test saving path
saving_path = time.strftime('results/Log_%Y-%m-%d_%H-%M-%S', time.gmtime())
test_path = join('test', saving_path.split('/')[-1])
makedirs(test_path) if not exists(test_path) else None
makedirs(join(test_path, 'predictions')) if not exists(join(test_path, 'predictions')) else None
makedirs(join(test_path, 'probs')) if not exists(join(test_path, 'probs')) else None
#####################
# Network predictions
#####################
step_id = 0
epoch_id = 0
last_min = -0.5
while last_min < num_votes:
try:
ops = (self.prob_logits,
model.labels,
model.inputs['input_inds'],
model.inputs['cloud_inds'],)
stacked_probs, stacked_labels, point_idx, cloud_idx = self.sess.run(ops, {model.is_training: False})
stacked_probs = np.reshape(stacked_probs, [model.config.val_batch_size, model.config.num_points,
model.config.num_classes])
for j in range(np.shape(stacked_probs)[0]):
probs = stacked_probs[j, :, :]
inds = point_idx[j, :]
c_i = cloud_idx[j][0]
self.test_probs[c_i][inds] = test_smooth * self.test_probs[c_i][inds] + (1 - test_smooth) * probs
step_id += 1
log_string('Epoch {:3d}, step {:3d}. min possibility = {:.1f}'.format(epoch_id, step_id, np.min(
dataset.min_possibility['test'])), self.log_out)
except tf.errors.OutOfRangeError:
# Save predicted cloud
new_min = np.min(dataset.min_possibility['test'])
log_string('Epoch {:3d}, end. Min possibility = {:.1f}'.format(epoch_id, new_min), self.log_out)
if last_min + 4 < new_min:
print('Saving clouds')
# Update last_min
last_min = new_min
# Project predictions
print('\nReproject Vote #{:d}'.format(int(np.floor(new_min))))
t1 = time.time()
files = dataset.test_files
i_test = 0
for i, file_path in enumerate(files):
# Get file
points = self.load_evaluation_points(file_path)
points = points.astype(np.float16)
# Reproject probs
probs = np.zeros(shape=[np.shape(points)[0], 8], dtype=np.float16)
proj_index = dataset.test_proj[i_test]
probs = self.test_probs[i_test][proj_index, :]
# Insert false columns for ignored labels
probs2 = probs
for l_ind, label_value in enumerate(dataset.label_values):
if label_value in dataset.ignored_labels:
probs2 = np.insert(probs2, l_ind, 0, axis=1)
# Get the predicted labels
preds = dataset.label_values[np.argmax(probs2, axis=1)].astype(np.uint8)
# Save plys
cloud_name = file_path.split('/')[-1]
# Save ascii preds
ascii_name = join(test_path, 'predictions', dataset.ascii_files[cloud_name])
np.savetxt(ascii_name, preds, fmt='%d')
log_string(ascii_name + 'has saved', self.log_out)
i_test += 1
t2 = time.time()
print('Done in {:.1f} s\n'.format(t2 - t1))
self.sess.close()
return
self.sess.run(dataset.test_init_op)
epoch_id += 1
step_id = 0
continue
return
@staticmethod
def load_evaluation_points(file_path):
data = read_ply(file_path)
return np.vstack((data['x'], data['y'], data['z'])).T