-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathui.R
93 lines (75 loc) · 5.7 KB
/
ui.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
require(shiny)
require(shinythemes)
require(shinyjs)
require(plotly)
shinyUI(fluidPage(theme= shinytheme("superhero"),
useShinyjs(),
titlePanel("SWATH differential expression"),
div(id = "dselect",
sidebarPanel(width = 5,
fileInput("dataFile", h4("Choose CSV File containing the data :"),
accept=c("text/csv", "text/comma-separated-values,text/plain", ".csv")),
"Note: The input file should be a .CSV file , containing a header and the first column being the protein names,
the other columns being the intensity for the differents samples.",
br(),
conditionalPanel(
condition = "input.manual == false",
fileInput("designFile", h5("Choose CSV File containing the experiment design matrix :"),
accept=c("text/csv", "text/comma-separated-values,text/plain", ".csv")),
fileInput("contrastFile", h5("Choose CSV File containing the contrast matrix :"),
accept=c("text/csv", "text/comma-separated-values,text/plain", ".csv"))
),
selectInput("norm", h5("normalization : "), choices = list('Mean centering and scaling' = "MEAN",
'quantile normalization' = "QUANTILE",
'median centering and scaling' = "MEDIAN",
'no normalization' = "NULL")),
checkboxInput("manual","manual entry of the experiment design"),
conditionalPanel(
condition = "input.manual == true",
fluidRow(
column(3, numericInput('nbCond',h5('number of conditions : '),value = 2, min = 2)),
column(7)
),
br(),
fluidRow(
column(6, conditionalPanel(condition = "input.nbCond != 0", uiOutput("text"))),
column(6, conditionalPanel(condition = "input.nbCond != 0",uiOutput("select")))
)
),
actionButton("submit","Submit")
)
),
hidden(div(id = "cselect",
sidebarPanel(
h4("choose condition to compare : "),
conditionalPanel(
condition= "input.manual == true",
numericInput('cond1','condition 1',value = 1, min = 1),
numericInput('cond2','condition 2',value = 2, min = 1)
),
conditionalPanel(
condition= "input.manual == false",
numericInput('comp','comparison',value = 1, min = 1)
),
h4("choose threshold : "),
sliderInput("p", label = "P value", min = 0, max = 0.2, value = 0.05),
sliderInput("fc", label = "Fold change", min = 0, max = 10, value = 0.5, step = 0.1),
actionButton("back","back"),
width = 2
)
)),
mainPanel(
hidden(div(id = "plots",
tabsetPanel(
tabPanel("Volcano plot", plotlyOutput("volcanoPlot", height = "720px", width = "1280px"),downloadButton('dlvp', 'Download Volcano plot (.svg)')),
tabPanel("boxplot", plotOutput("unnormalizedPlot", height = "600px"), plotOutput("normalizedPlot", height = "600px"))
),
br(),
tabsetPanel(
tabPanel("all proteins", dataTableOutput("allProteins"),downloadButton('dld', 'Download the table with all proteins (.csv)')),
tabPanel("significant proteins",dataTableOutput("significantProteins"),downloadButton('dlsd', 'Download the table with selected proteins (.csv)')),
br()
)
))
)
))