-
Notifications
You must be signed in to change notification settings - Fork 23
/
SquiggleKit.py
executable file
·800 lines (725 loc) · 31.7 KB
/
SquiggleKit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
## SquigglePull.py
import os
import sys
import argparse
import traceback
import numpy as np
import h5py
import time
import sklearn.preprocessing
## SquigglePlot.py
#import os
#import sys
import gzip
import io
#import traceback
#import argparse
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from matplotlib import rcParams
# rcParams.update({'figure.autolayout': True})
matplotlib.rcParams['pdf.fonttype'] = 42
matplotlib.rcParams['ps.fonttype'] = 42
# matplotlib.rcParams['figure.figsize'] = [18.0, 12.0]
matplotlib.rcParams['figure.dpi'] = 80
# matplotlib.rcParams['savefig.dpi'] = 300
#import numpy as np
#import h5py
## segmenter.py
#import numpy as np
#import matplotlib
matplotlib.use('TkAgg')
#import matplotlib.pyplot as plt
#import sys
#import os
#import gzip
#import io
#import argparse
#import traceback
#import h5py
#import sklearn.preprocessing
import subprocess
class MyParser(argparse.ArgumentParser):
def error(self, message):
sys.stderr.write('error: %s\n' % message)
self.print_help()
sys.exit(2)
def main():
parser = MyParser(
description="SquiggleKit - set of tools for processing and manipulating Oxford Nanopore raw signal data",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
subcommand = parser.add_subparsers(help='subcommand --help for help messages', dest="command")
# main options
parser.add_argument("-v", "--verbose", action="store_true",
help="Engage higher output verbosity")
# sub-module for fast5_fetcher
# sub-module for SquigglePull
pull = subcommand.add_parser('pull', help='extraction and (optional) conversion to pA of signal',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# SquigglePull sub-module options
pull.add_argument("-p", "--path",
help="Top directory path of fast5 files")
pull.add_argument("-t", "--type", action="store", default="auto", choices=["auto", "single", "multi"], help="Specify the type of files provided. Default is autodetection which enables a mix of single and multifast5 files.")
pull.add_argument("-r", "--raw_signal", action="store_true",
help="No conversion to pA, raw signal is extracted instead")
pull.add_argument("-i", "--extra_info", action="store_true",
help="Print extra information used for signal conversion and in methylation calling - nanopolish/f5c")
# sub-module for SquigglePlot
plot = subcommand.add_parser('plot', help='plot the signal data after (optional) conversion to pA',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# SquigglePlot sub-module options
group = plot.add_mutually_exclusive_group()
# need to make it so that raw_signal flag cannot be applied with the signal file
# currently cannot support it unless output file contains digitisation, range and offest values (extra info mode)
group.add_argument("-p", "--f5_path",
help="Fast5 top dir")
group.add_argument("-s", "--signal",
help="Extracted signal file from SquigglePull")
group.add_argument("-i", "--ind", nargs="+",
help="Individual fast5 file/s.")
plot.add_argument("-r", "--readID",
help="Individual readID to extract from a multifast5 file")
#plot.add_argument("--single",action="store_true",
# help="single fast5 files")
plot.add_argument("-t", "--type", action="store", default="auto", choices=["auto", "single", "multi"], help="Specify the type of files provided. Default is autodetection which enables a mix of single and multifast5 files.")
plot.add_argument("--head", action="store_true",
help="Header present in signal or flat file")
plot.add_argument("--raw_signal",action="store_true",
help="Plot raw signal instead of converting to pA")
plot.add_argument("-n", "--Num",
help="Section of signal to look at - -n 2000 or -n 100,1500")
plot.add_argument("--lim_hi", type=int, default=1200,
help="Upper limit for signal outliers")
plot.add_argument("--lim_low", type=int, default=0,
help="Lower limit for signal outliers")
# Arguments for now, but best way forward will probably be a config file
plot.add_argument("--plot_colour", default='grey',
help="Colour of signal plot, takes any pyplot entry: k,r,b,g,red,blue,etc...")
plot.add_argument("--save",
help="Save file readname_saveArg.pdf --save saveArg.pdf, use png, etc for other file types")
plot.add_argument("--save_path",
help="Save filepath")
plot.add_argument("--no_show", action="store_true",
help="Do not show plot (used for saving many)")
plot.add_argument("--dpi", type=int, default=100,
help="Change DPI for publication figs, eg: --dpi 300")
# sub-module for segmenter
segment = subcommand.add_parser('segmenter', help='find obvious structural regions in squiggle data',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# segmenter sub-module options
group = segment.add_mutually_exclusive_group()
group.add_argument("-f", "--f5f",
help="File list of fast5 paths")
group.add_argument("-p", "--f5_path",
help="Fast5 top dir")
group.add_argument("-s", "--signal",
help="Extracted signal file from squigglePull")
segment.add_argument("--single",action="store_true",
help="single fast5 files")
segment.add_argument("-n", "--Num", type=int, default=0,
help="Section of signal to look at - default 0=all")
segment.add_argument("-e", "--error", type=int, default=5,
help="Allowable error in segment algorithm")
segment.add_argument("-c", "--corrector", type=int, default=50,
help="Window size for increasing total error correction - better long segment detection")
segment.add_argument("-w", "--window", type=int, default=150,
help="Minimum segment window size to be detected")
segment.add_argument("-d", "--seg_dist", type=int, default=50,
help="Maximum distance between 2 segments to be merged into 1")
segment.add_argument("-t", "--std_scale", type=float, default=0.75,
help="Scale factor of STDev about median")
segment.add_argument("-v", "--view", action="store_true",
help="view each output")
segment.add_argument("-g", "--gap", action="store_true",
help="Turn on gap distance for stall to polyTAil")
segment.add_argument("-b", "--gap_dist", type=int, default=3000,
help="Maximum distance between stall and polyTAil segment - for 10X/dRNA")
segment.add_argument("-k", "--stall", action="store_true",
help="Turn on stall detection - must be present")
segment.add_argument("-u", "--test", action="store_true",
help="Run Tests")
segment.add_argument("-l", "--stall_len", type=float, default=0.25,
help="Minimum percentage of minimum window segment for initial stall segment")
segment.add_argument("-j", "--stall_start", type=int, default=300,
help="Maximum distance for start of stall segment to be detected")
segment.add_argument("-lim_hi", "--lim_hi", type=int, default=900,
help="Upper limit for signal outlier scaling")
segment.add_argument("-lim_low", "--lim_low", type=int, default=0,
help="Lower limit for signal outlier scaling")
segment.add_argument("--raw_signal",action="store_true",
help="Plot raw signal instead of converting to pA")
# sub-module for MotifSeq
# sub-module for web application
web = subcommand.add_parser('web', help='launch the web application version of SquiggleKit',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# collect args
args = parser.parse_args()
# print help if no arguments given
if len(sys.argv) == 1:
parser.print_help(sys.stderr)
sys.exit(1)
if args.verbose:
sys.stderr.write("Verbose mode on. Starting timer.\n")
start_time = time.time()
if args.command == "pull":
if len(sys.argv) == 2:
pull.print_help(sys.stderr)
sys.exit(1)
squigglePull(args)
if args.command == "plot":
if len(sys.argv) == 2:
plot.print_help(sys.stderr)
sys.exit(1)
squigglePlot(args)
if args.command == "segmenter":
if len(sys.argv) == 2:
segment.print_help(sys.stderr)
sys.exit(1)
segmenter(args)
if args.command == "web":
os.system("python main.py")
if args.verbose:
end_time = time.time() - start_time
sys.stderr.write("Time taken: {}\n".format(end_time))
sys.stderr.write("Done\n")
def squigglePull(args):
for dirpath, dirnames, files in os.walk(args.path):
for fast5 in files:
if fast5.endswith('.fast5'):
fast5_file = os.path.join(dirpath, fast5)
# extract data from file
data, multi = extract_f5_all(fast5_file, args)
if not data:
sys.stderr.write("main():data not extracted from {}. Moving to next file.".format(fast5_file))
continue
# print data
if not multi:
print_data(data, args, fast5)
else:
for read in data:
print_data(data[read], args, fast5)
def squigglePlot(args):
matplotlib.rcParams['savefig.dpi'] = args.dpi
N = 0
N1 = 0
N2 = 0
# Num gives section of the signal to look at
if args.Num:
if ',' in args.Num:
N1, N2 = args.Num.split(',')
N1, N2 = int(N1), int(N2)
else:
N = int(args.Num)
head = False
if args.head:
head = True
if args.f5_path:
# process fast5 files given top level path
for dirpath, dirnames, files in os.walk(args.f5_path):
for fast5 in files:
if fast5.endswith('.fast5'):
fast5_file = os.path.join(dirpath, fast5)
data, multi = extract_f5_all(fast5_file, args)
if not multi:
sig = data.get('raw')
if not sig:
sys.stderr.write("main():data not extracted. Moving to next file: {}\n".format(fast5_file))
continue
if N:
sig = sig[:N]
elif N1 or N2:
sig = sig[N1:N2]
sig = np.array(sig, dtype=float)
sig = scale_outliers(sig, args)
view_sig(args, sig, fast5, fast5_file)
else:
# extract data from file
for read in data:
sig = data[read].get('raw')
if not len(sig):
sys.stderr.write("main():data not extracted from read {}. Moving to next file: {}\n".format(read, fast5_file))
continue
if N:
sig = sig[:N]
elif N1 or N2:
sig = sig[N1:N2]
sig = np.array(sig, dtype=float)
sig = scale_outliers(sig, args)
view_sig(args, sig, read, fast5_file)
elif args.ind:
files = args.ind
print("files:", files)
for fast5_file in files:
# Do an OS detection here for windows (get from fast5_fetcher)
# fast5_file = args.ind.split('/')[-1]
# fast5_file_name = fast5_file.split('/')[-1]
# extract data from file
sig = None
data, multi = extract_f5_all(fast5_file, args)
if not multi:
sig = data.get('raw')
read = fast5_file
else:
if args.readID:
# if readID is provided, only get data with matching readID
# is this the same for all multifast5 files?
sig = data['read_'+args.readID].get('raw')
read = args.readID
else:
for read in data:
sig = data[read].get('raw')
if not sig.any():
sys.stderr.write("main():data not extracted from: {}".format(args.ind))
if N:
sig = sig[:N]
elif N1 or N2:
sig = sig[N1:N2]
sig = np.array(sig, dtype=float)
sig = scale_outliers(sig, args)
view_sig(args, sig, read, fast5_file)
continue
if not sig.any():
sys.stderr.write("main():data not extracted from: {}".format(args.ind))
parser.print_help(sys.stderr)
sys.exit(1)
if N:
sig = sig[:N]
elif N1 or N2:
sig = sig[N1:N2]
sig = np.array(sig, dtype=float)
sig = scale_outliers(sig, args)
view_sig(args, sig, read, fast5_file)
elif args.signal:
# signal file, from squigglepull
# testing
with open(args.signal, 'rt') as sz:
for l in sz:
if head:
head = False
continue
l = l.strip('\n')
l = l.split('\t')
fast5 = l[0]
readID = l[1]
if args.readID:
if args.readID != readID:
continue
# modify the l[6:] to the column the data starts...little bit of variability here.
# sig = np.array([int(i) for i in l[4:]], dtype=int)
if "." in l[4]:
sig = np.array([float(i) for i in l[4:]], dtype=float)
else:
sig = np.array([int(i) for i in l[4:]], dtype=int)
if not sig.any():
sys.stderr.write("No signal found: {}".format(args.signal))
parser.print_help(sys.stderr)
sys.exit(1)
if N:
sig = sig[:N]
elif N1 or N2:
sig = sig[N1:N2]
sig = scale_outliers(sig, args)
view_sig(args, sig, readID, fast5)
def segmenter(args):
if not args.Num:
args.Num = -1
if args.f5f:
# file list of fast5 files.
# fast5_name {Tab} quality_score
# not using the second column atm
args.single = True
with open(args.f5f, 'r') as s:
for l in s:
l = l.strip('\n')
l = l.split('\t')[0]
path = l
l = l.split('/')
fast5 = l[-1]
data, multi = extract_f5_all(path, args)
sig = data.get('raw')
if not sig.any():
sys.stderr.write("main():data not extracted. Moving to next file: {}".format(fast5))
continue
# cut signal based on -n flag
sig = sig[:args.Num]
# This removes very large high and low peaks
sig = scale_outliers(sig, args)
# Do the segment detection
segs = get_segs(sig, args)
if not segs:
sys.stderr.write("no segments found: {}".format(fast5))
continue
# run tests on segments based on user question
if args.test:
segs = test_segs(segs, args)
if not segs:
continue
# output sections
out = []
for i, j in segs:
out.append(str(i))
out.append(str(j))
output = ",".join(out)
print("\t".join([fast5, output]))
# visualise for parameter tuning
if args.view:
view_segs(segs, sig, args)
elif args.f5_path:
# process fast5 files given top level path, recursive
for dirpath, dirnames, files in os.walk(args.f5_path):
for fast5 in files:
if fast5.endswith('.fast5'):
fast5_file = os.path.join(dirpath, fast5)
# extract data from file
data, multi = extract_f5_all(fast5_file, args)
if args.single:
# extract data from file
sig = data.get('raw')
if not sig.any():
sys.stderr.write("main():data not extracted. Moving to next file: {}".format(fast5))
continue
# cut signal based on -n flag
sig = sig[:args.Num]
sig = np.array(sig, dtype=float)
# This removes very large high and low peaks
sig = scale_outliers(sig, args)
# Do the segment detection
segs = get_segs(sig, args)
if not segs:
sys.stderr.write("no segments found: {}".format(fast5))
continue
# run tests on segments based on user question
if args.test:
segs = test_segs(segs, args)
if not segs:
continue
# output sections
out = []
for i, j in segs:
out.append(str(i))
out.append(str(j))
output = ",".join(out)
print("\t".join([fast5, output]))
# visualise for parameter tuning
if args.view:
view_segs(segs, sig, args)
else:
for read in data:
sig = data[read].get('raw')
sig = sig[:args.Num]
if not sig.any():
sys.stderr.write("main():data not extracted from read {}. Moving to next file: {}\n".format(read, fast5_file))
continue
sig = np.array(sig, dtype=float)
sig = scale_outliers(sig, args)
segs = get_segs(sig, args)
if not segs:
sys.stderr.write("no segments found: {}".format(fast5))
continue
# run tests on segments based on user question
if args.test:
segs = test_segs(segs, args)
if not segs:
continue
# output sections
out = []
for i, j in segs:
out.append(str(i))
out.append(str(j))
output = ",".join(out)
print("\t".join([read, output]))
# visualise for parameter tuning
if args.view:
view_segs(segs, sig, args)
elif args.signal:
# signal file, gzipped, from squigglepull
head = False
if args.signal.endswith('.gz'):
f_read = dicSwitch('gz')
else:
f_read = dicSwitch('norm')
with f_read(args.signal, 'r') as s:
if args.signal.endswith('.gz'):
s = io.BufferedReader(s)
for l in s:
if head:
head = False
continue
l = l.strip('\n')
l = l.split('\t')
fast5 = l[0]
# modify the l[3:] to the column the data starts...little bit of variability here.
# TODO: make this based on column header
if "." in l[4]:
sig = np.array([float(i) for i in l[4:]], dtype=float)
else:
sig = np.array([int(i) for i in l[4:]], dtype=int)
#sig = np.array([int(i) for i in l[4:]], dtype=int)
if not sig.any():
sys.stderr.write("No signal found in file: {} {}".format(args.signal, fast5))
continue
# cut signal based on -n flag
sig = sig[:args.Num]
# This removes very large high and low peaks
sig = scale_outliers(sig, args)
# Do the segment detection
segs = get_segs(sig, args)
if not segs:
sys.stderr.write("no segments found: {}".format(fast5))
continue
# run tests on segments based on user question
if args.test:
segs = test_segs(segs, args)
if not segs:
sys.stderr.write("no segs for testing: {}".format(fast5))
continue
# output sections
out = []
for i, j in segs:
out.append(str(i))
out.append(str(j))
output = ",".join(out)
print("\t".join([fast5, output]))
# visualise for parameter tuning
if args.view:
view_segs(segs, sig, args)
def extract_f5_all(filename, args):
'''
inputs:
filepath/name
args from command line
does:
open fast5 files, extract whole signal and read data
converts to pA by default
Returns:
dic for further processing/printing
'''
f5_dic = {}
multi = False
with h5py.File(filename, 'r') as hdf:
if args.type == "auto":
reads = list(hdf.keys())
if 'read' not in reads[1]:
if args.verbose:
sys.stderr.write("{} detected as a single fast5 file\n".format(filename))
multi = False
else:
if args.verbose:
sys.stderr.write("{} detected as a multi fast5 file\n".format(filename))
multi = True
elif args.type == "multi":
reads = list(hdf.keys())
multi = True
# single fast5 files
if not multi:
f5_dic = {'raw': [], 'seq': '', 'readID': '',
'digitisation': 0.0, 'offset': 0.0, 'range': 0.0,
'sampling_rate': 0.0}
# extract the data
try:
c = list(hdf['Raw/Reads'].keys())
for col in hdf['Raw/Reads/'][c[0]]['Signal'][()]:
f5_dic['raw'].append(int(col))
f5_dic['readID'] = hdf['Raw/Reads/'][c[0]].attrs['read_id'].decode()
digitisation = hdf['UniqueGlobalKey/channel_id'].attrs['digitisation']
offset = hdf['UniqueGlobalKey/channel_id'].attrs['offset']
range = float("{0:.2f}".format(hdf['UniqueGlobalKey/channel_id'].attrs['range']))
# convert to pA and round
if not(args.raw_signal):
f5_dic['raw'] = np.array(f5_dic['raw'], dtype=int)
f5_dic['raw'] = convert_to_pA_numpy(f5_dic['raw'], digitisation, range, offset)
f5_dic['raw'] = np.round(f5_dic['raw'], 2)
# save the extra info for printing
if args.command == "pull":
if args.extra_info:
f5_dic['digitisation'] = digitisation
f5_dic['offset'] = offset
f5_dic['range'] = range
f5_dic['sampling_rate'] = hdf['UniqueGlobalKey/channel_id'].attrs['sampling_rate']
except:
traceback.print_exc()
sys.stderr.write("extract_fast5_all():failed to extract data from {}\n".format(filename))
f5_dic = {}
# multi fast5 files
else:
for read in list(hdf.keys()):
f5_dic[read] = {'raw': [], 'seq': '', 'readID': '',
'digitisation': 0.0, 'offset': 0.0, 'range': 0.0,
'sampling_rate': 0.0}
# extract the data
try:
# if readID is provided, only extract and save that information
readID = hdf[read]['Raw'].attrs['read_id'].decode()
if args.command == 'plot':
if args.readID:
if readID != args.readID:
continue
f5_dic[read]['readID'] = readID
for col in hdf[read]['Raw/Signal'][()]:
f5_dic[read]['raw'].append(int(col))
digitisation = hdf[read]['channel_id'].attrs['digitisation']
offset = hdf[read]['channel_id'].attrs['offset']
range = float("{0:.2f}".format(hdf[read]['channel_id'].attrs['range']))
# convert to pA and round
if not(args.raw_signal):
f5_dic[read]['raw'] = np.array(f5_dic[read]['raw'], dtype=int)
f5_dic[read]['raw'] = convert_to_pA_numpy(f5_dic[read]['raw'], digitisation, range, offset)
f5_dic[read]['raw'] = np.round(f5_dic[read]['raw'], 2)
# save the extra info for printing
if args.command == "pull":
if args.extra_info:
f5_dic[read]['digitisation'] = digitisation
f5_dic[read]['offset'] = offset
f5_dic[read]['range'] = range
f5_dic[read]['sampling_rate'] = hdf[read]['channel_id'].attrs['sampling_rate']
except:
traceback.print_exc()
sys.stderr.write("extract_fast5_all():failed to read readID: {}\n".format(read))
return f5_dic, multi
#def check_multi(file, signal):
# if signal:
#check if signal file is a multi
def convert_to_pA_numpy(d, digitisation, range, offset):
raw_unit = range / digitisation
return (d + offset) * raw_unit
def scale_outliers(sig, args):
''' Scale outliers to within m stdevs of median '''
''' Remove outliers that don't fit within the specified bounds '''
k = (sig > args.lim_low) & (sig < args.lim_hi)
return sig[k]
def dicSwitch(i):
'''
A switch to handle file opening and reduce duplicated code
'''
open_method = {
"gz": gzip.open,
"norm": open
}
return open_method[i]
def print_data(data, args, fast5):
ar = map(str, data['raw'])
#for i in data['raw']:
# ar.append(str(i))
if args.extra_info:
print('{}\t{}\t{}\t{}\t{}\t{}\t{}'.format(fast5, data['readID'],
data['digitisation'], data['offset'], data['range'],
data['sampling_rate'], '\t'.join(ar)))
else:
print('{}\t{}\t{}'.format(
fast5, data['readID'], '\t'.join(ar)))
def view_sig(args, sig, name, fast5, path=None):
'''
View the squiggle
'''
fig = plt.figure(1)
# fig.subplots_adjust(hspace=0.1, wspace=0.01)
# ax = fig.add_subplot(111)
# plt.tight_layout()
plt.autoscale()
plt.xlabel("")
# print(sig.dtype)
# print(sig.dtype == float64)
if args.signal:
if sig.dtype == float:
raw = False
elif sig.dtype == int:
raw = True
else:
raw = args.raw_signal
if raw:
plt.title("Raw signal for: {}\nFile: {}".format(name, fast5))
plt.ylabel("Current - Not scaled")
else:
plt.title("Signal for: {}\nFile: {}".format(name, fast5))
plt.ylabel("Current (pA)")
plt.plot(sig, color=args.plot_colour)
if args.save:
filename = os.path.join(args.save_path, "{}_dpi_{}_{}".format(name, args.dpi, args.save))
plt.savefig(filename)
if not args.no_show:
plt.show()
plt.clf()
def get_segs(sig, args):
'''
Get segments from signal
This works by running through the signal and finding regions that are above
the bot and below the top parameters, with some error tollerance, for a
minimum window of length.
'''
mn = sig.min()
mx = sig.max()
mean = np.mean(sig)
median = np.median(sig)
# use this with outlier rejection to fix stdev thresholds
stdev = np.std(sig)
top = median + (stdev * args.std_scale)
bot = median - (stdev * args.std_scale)
# parameter tuning visualisation
# TODO: Put tuning plots here
# this is the algo. Simple yet effective
prev = False # previous string
err = 0 # total error
prev_err = 0 # consecutive error
c = 0 # counter
w = args.corrector # window to increase total error thresh
seg_dist = args.seg_dist # distance between 2 segs to be merged as one
start = 0 # start pos
end = 0 # end pos
segs = [] # segments [(start, stop)]
for i in range(len(sig)):
a = sig[i]
if a < top and a > bot: # If datapoint is within range
if not prev:
start = i
prev = True
c += 1 # increase counter
w += 1 # increase window corrector count
if prev_err:
prev_err = 0
if c >= args.window and c >= w and not c % w: # if current window longer than detect limit, and corrector, and is divisible by corrector
err -= 1 # drop current error count by 1
else:
if prev and err < args.error:
c += 1
err += 1
prev_err += 1
if c >= args.window and c >= w and not c % w:
err -= 1
elif prev and (c >= args.window or not segs and c >= args.window * args.stall_len):
end = i - prev_err # go back to where error stretch began for accurate cutting
prev = False
if segs and start - segs[-1][1] < seg_dist: # if segs very close, merge them
segs[-1][1] = end
else:
segs.append([start, end]) # save segment
c = 0
err = 0
prev_err = 0
elif prev:
prev = False
c = 0
err = 0
prev_err = 0
else:
continue
if segs:
return segs
else:
# print >> sys.stderr, "no segs found"
return False
def view_segs(segs, sig, args):
'''
View the segments on the squiggle
'''
fig = plt.figure(1)
#fig.subplots_adjust(hspace=0.1, wspace=0.01)
ax = fig.add_subplot(111)
# Show segment lines
for i, j in segs:
ax.axvspan(i, j, alpha=0.5, color='m')
plt.plot(sig, color='k')
plt.show()
plt.clf()
if __name__ == '__main__':
main()