-
Notifications
You must be signed in to change notification settings - Fork 3
/
app.py
111 lines (82 loc) · 3.25 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import streamlit as st
from PyPDF2 import PdfReader
from dotenv import load_dotenv
from langchain.text_splitter import CharacterTextSplitter
from langchain_openai import OpenAI, OpenAIEmbeddings
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from web_template import css, bot_template, user_template
def get_pdf_content(documents):
raw_text = ""
for document in documents:
pdf_reader = PdfReader(document)
for page in pdf_reader.pages:
raw_text += page.extract_text()
return raw_text
def get_chunks(text):
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
text_chunks = text_splitter.split_text(text)
return text_chunks
def get_embeddings(chunks):
embeddings = OpenAIEmbeddings()
# embeddings = HuggingFaceInstructEmbeddings(model_name="")
vector_storage = FAISS.from_texts(texts=chunks, embedding=embeddings)
return vector_storage
def start_conversation(vector_embeddings):
llm = ChatOpenAI()
memory = ConversationBufferMemory(
memory_key='chat_history',
return_messages=True
)
conversation = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vector_embeddings.as_retriever(),
memory=memory
)
return conversation
def process_query(query_text):
response = st.session_state.conversation({'question': query_text})
st.session_state.chat_history = response["chat_history"]
for i, message in enumerate(st.session_state.chat_history):
if i%2 == 0:
st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
def main():
load_dotenv()
st.set_page_config(page_title="Chat with PDFs", page_icon=":books:", layout="wide")
st.image("templates/baasha.jpg")
st.write(css, unsafe_allow_html=True)
st.header("Hi, I am Baasha, a PDF ChatBot")
query = st.text_input("How can I help you today?")
if query:
process_query(query)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
with st.sidebar:
st.subheader("PDF documents")
documents = st.file_uploader(
"Upload your PDF files", type=["pdf"], accept_multiple_files=True
)
if st.button("Run"):
with st.spinner("Processing..."):
# extract text from pdf documents
extracted_text = get_pdf_content(documents)
# convert text to chunks of data
text_chunks = get_chunks(extracted_text)
# create vector embeddings
vector_embeddings = get_embeddings(text_chunks)
# create conversation
st.session_state.conversation = start_conversation(vector_embeddings)
if __name__ == "__main__":
main()