forked from moeller0/ATM_overhead_detector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ATM_overhead_detector.m
1252 lines (1072 loc) · 49 KB
/
ATM_overhead_detector.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
function [ output_args ] = ATM_overhead_detector( sweep_fqn, up_Kbit, down_Kbit )
%ATM_OVERHEAD_DETECTOR Summary of this function goes here
% try to read in the result from a ping sweep run
% sweep_fqn (optional): the log file of the ping sweep against the first hop after
% the DSL link
% up_Kbit (optional): the uplink rate in Kilobits per second
% down_Kbit (optional): the downlink rate in Kilobits per second
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License version 2 as
% published by the Free Software Foundation.
%
% Copyright (C) 2015, 2016 Sebastian Moeller
%
% NOTES:
% Under octave 3.8.2 under macosx the fltk backend crashes, and the
% gnuplot backend only exports/saves black boxes... seems to work under
% linux though
%
% TODO:
% estimate the best MTU for the estimated protocol stack (how to test this?)
% 1) estimate the largest MTU that avoids fragmentation (default 1500 - 28 should be largest without fragmentation)
% 2) estimate the largest MTU that does not have padding in the last
% ATM cell, for this pick the MTU that no partial ATM cell remains
% include the potential PACKET sizes for VLAN tagged packets as well?
% try boxcox function to deskew the right-skewed RTT distribution
%
%
%Thoughts:
% the sweep should be taken directly connected to the modem to reduce
% non-ATM routing delays
if (ismac)
octave_use_gnuplot = 1;
else
octave_use_gnuplot = 1; % the fltk backend seems to have issues with exporting data via ghostscript
end
if ~(isoctave)
dbstop if error;
timestamps.(mfilename).start = tic;
else
tic();
if (octave_use_gnuplot)
graphics_toolkit('gnuplot');
setenv GNUTERM wxt ; %sm: should be equivalent to setenv("GNUTERM","wxt"); but unlike the later will not confuse matlab
else
if (ismac)
%graphics_toolkit fltk; __init_fltk__ quit
end
end
end
disp(['Starting: ', mfilename]);
output_args = [];
% control options
show_mean = 1; % the means are noisier than the medians
show_robust_mean = 1; % the mean gets a bit better after excluding the top and bottom 5%
show_median = 1; % the median seems the way to go
show_min = 1; % the min should be the best measure, but in the ATM test sweep it is too variable
show_max = 0; % only useful for debugging
show_sem = 0; % give some estimate of the variance
show_ci = 1; % show the confidence interval of the mean, if the mean is shown
show_geomean = 1; %ATTENTION: this requires the octave-statistics package, installed and loaded (pkg load statistics)
show_robust_geomean = 1; %ATTENTION: this requires the octave-statistics package
show_delogged_logmean = 0;
ci_alpha = 0.05; % alpha for confidence interval calculation
use_measure = 'median'; % median, or robust_mean
plot_output_format = 'png'; % what to save
use_processed_results = 1; % do not parse the ASCII file containg the ping output again (as the parser is very slow)
max_samples_per_size = []; % if not empty only use maximally that many samples per size
% max_samples_per_size = 1000; % if not empty only use maximally that many samples per size
if (isoctave)
if (show_geomean || show_robust_geomean)
disp('Octave statistics package required.')
require_octave_stats_pkg = 1;
end
if exist('require_octave_stats_pkg', 'var') && (require_octave_stats_pkg)
[pkg_is_loadable, pkg_is_loaded] = check_octave_pkg_availability('statistics');
if (pkg_is_loadable) && ~(pkg_is_loaded)
disp('Attemptimg to load statistics package');
pkg load statistics
end
% geomean lives in the statistics package so use it as 'canary'
if ~exist('geomean')
disp('Could not load statistics package.');
% change all control parameters that would drag in the statistics package
show_geomean = 0;
show_robust_geomean = 0;
if ismember(use_measure, {'geomean', 'robust_geomean'})
disp(['Selected analaysis statistic (', use_measure, ') is not available, defaulting to median instead']);
use_measure = 'median';
end
else
disp('Octave statistics pkg loaded successfully.');
end
end
fflush(stdout); % make octave display intermediate output...
end
% if not specified we try to estimate the per cell RTT from the data
default_up_Kbit = [];
default_down_KBit = [];
if (nargin == 0)
sweep_fqn = '';
% sweep_fqn = fullfile(pwd, 'ping_sweep_CABLE_20120801_001235.txt');
if isempty(sweep_fqn)
[sweep_name, sweep_dir] = uigetfile({'ping*.txt';'ping*.mat'});
sweep_fqn = fullfile(sweep_dir, sweep_name);
end
up_Kbit = default_up_Kbit;
down_Kbit = default_down_KBit;
end
if (nargin == 1)
up_Kbit = default_up_Kbit;
down_Kbit = default_down_KBit;
end
if (nargin == 2)
down_Kbit = default_down_KBit;
end
%ATM
quantum.byte = 48; % ATM packets are always 53 bytes, 48 thereof payload
quantum.bit = quantum.byte * 8;
ATM_cell.byte = 53;
ATM_cell.bit = ATM_cell.byte * 8;
% known packet size offsets in bytes
offsets.IPv4 = 20; % assume no IPv4 options are used, IPv6 would be 40bytes?
offsets.IPv6 = 40; % not used yet...
offsets.ICMP = 8; % ICMP header
offsets.ethernet = 14; % ethernet header
offset.ATM.max_encapsulation_bytes = 44; % see http://ace-host.stuart.id.au/russell/files/tc/tc-atm/, but note that due to VLAN tags we can reach 48 worst case...
MTU = 1500; % the nominal MTU to the ping host should be 1500, but might be lower if using a VPN
max_MTU_for_overhead_determination = 1280; % 1280 is true for IPv6, for IPv4 the minMTU is 576
% fragmentation will cause an addition relative large increase in RTT (not necessarily registered to the ATM cells)
% that will confuse the ATM quantisation offset detector, so exclude all
% ping sizes that are potentially affected by fragmentation
max_ping_size_without_fragmentation = MTU + offsets.ethernet - offsets.IPv4 - offset.ATM.max_encapsulation_bytes;
% unknown offsets is what we need to figure out to feed tc-stab...
[sweep_dir, sweep_name] = fileparts(sweep_fqn);
cur_parsed_data_mat = [sweep_fqn(1:end-4), '.mat'];
if (use_processed_results && ~isempty(dir(cur_parsed_data_mat)))
disp(['Loading processed ping data from ', cur_parsed_data_mat]);
load(cur_parsed_data_mat, 'ping');
else
% read in the result from a ping sweep
disp(['Processing ping data from ', sweep_fqn]);
ping = parse_ping_output(sweep_fqn);
if isempty(ping)
disp('No useable ping data found, exiting...');
return
end
if (isoctave)
save('-v7', cur_parsed_data_mat, 'ping');
else
save(cur_parsed_data_mat, 'ping');
end
end
% analyze the data
min_ping_size = min(ping.data(:, ping.cols.size)) - offsets.ICMP;
disp(['Minimum size of ping payload used: ', num2str(min_ping_size), ' bytes.']);
known_overhead = offsets.IPv4; % ping reports the ICMP header already included in size
ping.data(:, ping.cols.size) = ping.data(:, ping.cols.size) + known_overhead; % we know we used IPv4 so add the 20 bytes already, so that size are relative to the start of the IP header
size_list = unique(ping.data(:, ping.cols.size)); % this is the number of different sizes, but there might be holes/missing sizes
max_pingsize = max(size_list);
% packets larger than the pMTU will get fragmented, resulting in a extra-large step (roughly 2 to 3 times larger than usual) somewhere in the data
% which will confuse the simplistic stair finder, so limit the search space
% to <+ 1280 the min MTU for IPv6, hoping that this should work
% everywhere...
if (size_list(end) > max_MTU_for_overhead_determination)
disp(['Restricting the ATM quantization search space to <= ', num2str(max_MTU_for_overhead_determination), ' bytes.']);
tmp_idx = find(size_list <= max_MTU_for_overhead_determination);
if (isempty(tmp_idx))
disp(['No data with size <= ', num2str(max_MTU_for_overhead_determination), ' bytes found; ATM quantization can not be determined....']);
return
end
measured_size_list = size_list;
size_list = measured_size_list(tmp_idx);
measured_max_pingsize = max_pingsize;
max_pingsize = max(size_list);
end
per_size.header = {'size', 'mean', 'robust_mean', 'median', 'min', 'max', 'std', 'n', 'sem', 'ci', 'geomean', 'robust_geomean', 'delogged_logmean'};
per_size.cols = get_column_name_indices(per_size.header);
per_size.data = zeros([max_pingsize, length(per_size.header)]) / 0; % NaNs
per_size.data(:, per_size.cols.size) = (1:1:max_pingsize);
if ~isempty(max_samples_per_size)
disp(['Analysing only the first ', num2str(max_samples_per_size), ' samples.']);
end
for i_size = 1 : length(size_list)
cur_size = size_list(i_size);
% throw out negative numbers?
cur_size_idx = find(ping.data(:, ping.cols.size) == cur_size);
remove_impossible_times = 1;
if (remove_impossible_times)
cur_size_n_samples = length(cur_size_idx);
cur_size_idx = find((ping.data(:, ping.cols.size) == cur_size) & (ping.data(:, ping.cols.time) >= 0));
if (length(cur_size_idx) < cur_size_n_samples)
disp(['Excluded ', num2str(cur_size_n_samples - length(cur_size_idx)), ' samples due to negative RTTs (invalid measurements)...']);
end
end
if ~isempty(max_samples_per_size)
n_selected_samples = min([length(cur_size_idx), max_samples_per_size]);
cur_size_idx = cur_size_idx(1:n_selected_samples);
%disp(['Analysing only the first ', num2str(max_samples_per_size), ' samples of ', num2str(length(cur_size_idx))]);
end
per_size.data(cur_size, per_size.cols.mean) = mean(ping.data(cur_size_idx, ping.cols.time));
% robust mean, aka mean of 5 to 95 quantiles
per_size.data(cur_size, per_size.cols.robust_mean) = robust_mean(ping.data(cur_size_idx, ping.cols.time), 0.1, 0.9); % take the mean while excluding extreme values
per_size.data(cur_size, per_size.cols.median) = median(ping.data(cur_size_idx, ping.cols.time));
per_size.data(cur_size, per_size.cols.min) = min(ping.data(cur_size_idx, ping.cols.time));
per_size.data(cur_size, per_size.cols.max) = max(ping.data(cur_size_idx, ping.cols.time));
per_size.data(cur_size, per_size.cols.std) = std(ping.data(cur_size_idx, ping.cols.time), 0);
per_size.data(cur_size, per_size.cols.n) = length(cur_size_idx);
per_size.data(cur_size, per_size.cols.sem) = per_size.data(cur_size, per_size.cols.std) / sqrt(length(cur_size_idx));
per_size.data(cur_size, per_size.cols.ci) = calc_cihw(per_size.data(cur_size, per_size.cols.std), per_size.data(cur_size, per_size.cols.n), ci_alpha);
if (show_geomean)
per_size.data(cur_size, per_size.cols.geomean) = geomean(ping.data(cur_size_idx, ping.cols.time));
end
if (show_robust_geomean)
per_size.data(cur_size, per_size.cols.robust_geomean) = robust_geomean(ping.data(cur_size_idx, ping.cols.time), 0.1, 0.9); % take the geomean while excluding extreme values
end
%per_size.data(cur_size, per_size.cols.delogged_logmean) = 10^(mean(log10(ping.data(cur_size_idx, ping.cols.time))));
per_size.data(cur_size, per_size.cols.delogged_logmean) = exp(mean(log(ping.data(cur_size_idx, ping.cols.time))));
end
clear ping % with large data sets 32bit matlab will run into memory issues...
data_fh = figure('Name', sweep_name);
hold on;
legend_str = {};
if (show_mean)
% means
legend_str{end + 1} = 'mean';
plot(per_size.data(:, per_size.cols.size), per_size.data(:, per_size.cols.mean), 'Color', [0 1 0 ]);
legend_str{end + 1} = 'robust mean';
plot(per_size.data(:, per_size.cols.size), per_size.data(:, per_size.cols.robust_mean), 'Color', [0 0.75 0 ]);
if (show_sem)
legend_str{end + 1} = '+sem';
legend_str{end + 1} = '-sem';
plot(per_size.data(:, per_size.cols.size), per_size.data(:, per_size.cols.mean) - per_size.data(:, per_size.cols.sem), 'Color', [0 0.66 0]);
plot(per_size.data(:, per_size.cols.size), per_size.data(:, per_size.cols.mean) + per_size.data(:, per_size.cols.sem), 'Color', [0 0.66 0]);
end
if (show_ci)
legend_str{end + 1} = '+ci';
legend_str{end + 1} = '-ci';
plot(per_size.data(:, per_size.cols.size), per_size.data(:, per_size.cols.mean) - per_size.data(:, per_size.cols.ci), 'Color', [0 0.37 0]);
plot(per_size.data(:, per_size.cols.size), per_size.data(:, per_size.cols.mean) + per_size.data(:, per_size.cols.ci), 'Color', [0 0.37 0]);
end
end
if (show_geomean)
legend_str{end + 1} = 'geomean';
plot(per_size.data(:, per_size.cols.size), per_size.data(:, per_size.cols.geomean), 'Color', [0.5 0.5 0.5 ]);
end
if (show_robust_geomean)
legend_str{end + 1} = 'robust geomean';
plot(per_size.data(:, per_size.cols.size), per_size.data(:, per_size.cols.robust_geomean), 'Color', [0.2 0.2 0.2 ]);
end
if (show_delogged_logmean)
legend_str{end + 1} = 'delogged logmean';
plot(per_size.data(:, per_size.cols.size), per_size.data(:, per_size.cols.delogged_logmean), 'Color', [0 0 0.5]);
end
if(show_median)
% median +- standard error of the mean, confidence interval would be
% better
legend_str{end + 1} = 'median';
plot(per_size.data(:, per_size.cols.size), per_size.data(:, per_size.cols.median), 'Color', [1 0 0]);
if (show_sem)
legend_str{end + 1} = '+sem';
legend_str{end + 1} = '-sem';
plot(per_size.data(:, per_size.cols.size), per_size.data(:, per_size.cols.median) - per_size.data(:, per_size.cols.sem), 'Color', [0.66 0 0]);
plot(per_size.data(:, per_size.cols.size), per_size.data(:, per_size.cols.median) + per_size.data(:, per_size.cols.sem), 'Color', [0.66 0 0]);
end
if(show_min)
% minimum, should be cleanest, but for the test data set looks quite sad...
legend_str{end + 1} = 'min';
plot(per_size.data(:, per_size.cols.size), per_size.data(:, per_size.cols.min), 'Color', [0 0 1]);
end
if(show_max)
% minimum, should be cleanest, but for the test data set looks quite sad...
legend_str{end + 1} = 'max';
plot(per_size.data(:, per_size.cols.size), per_size.data(:, per_size.cols.max), 'Color', [0 0 0.66]);
end
end
title({['If this plot shows a (noisy) step function with a stepping of ', num2str(quantum.byte), ' bytes'], ['then the data carrier is quantised, make sure to use tc-stab']});
xlabel('Approximate packet size [bytes]');
ylabel('ICMP round trip times (ping RTT) [ms]');
legend(legend_str, 'Location', 'NorthWest', 'Interpreter', 'none');
hold off;
if ~isempty(plot_output_format)
write_out_figure(data_fh, fullfile(sweep_dir, [sweep_name, '_data.', plot_output_format]));
end
% potentially clean up the data, by interpolating values with large sem
% from the neighbours or replacing those with NaNs?
% if the size of the ping packet exceeds the MTU the ping packets gets
% fragmented the step over this ping size will cause a RTT increaser >> one
% RTT_quantum, so exclude all sizes potentially affected by this from the
% search space, (for now assume that the route to the ping host actually can carry 1500 byte MTUs...)
measured_pingsize_idx = find(~isnan(per_size.data(:, per_size.cols.(use_measure))));
tmp_idx = find(measured_pingsize_idx <= max_ping_size_without_fragmentation);
last_non_fragmented_pingsize = measured_pingsize_idx(tmp_idx(end));
ping_sizes_for_linear_fit = measured_pingsize_idx(tmp_idx);
% fit a line to the data, to estimate the RTT per byte
[p, S] = polyfit(per_size.data(ping_sizes_for_linear_fit, per_size.cols.size), per_size.data(ping_sizes_for_linear_fit, per_size.cols.(use_measure)), 1);
RTT_per_byte = p(end - 1);
fitted_line = polyval(p, per_size.data(ping_sizes_for_linear_fit, per_size.cols.size), S);
input_data = per_size.data(ping_sizes_for_linear_fit, per_size.cols.(use_measure));
% estimate the goodness of the linear fit the same way as for the stair
% function
linear_cumulative_difference = sum(abs(input_data - fitted_line));
% figure
% hold on
% plot(per_size.data(ping_sizes_for_linear_fit, per_size.cols.size), per_size.data(ping_sizes_for_linear_fit, per_size.cols.(use_measure)), 'Color', [0 1 0]);
% plot(per_size.data(ping_sizes_for_linear_fit, per_size.cols.size), fitted_line, 'Color', [1 0 0]);
% hold off
% based on the linear fit we can estimate the average RTT per ATM cell
estimated_RTT_quantum_ms = RTT_per_byte * 48;
% just get an idea what range the RTTs per ATM quantum can be for different
% bandwidths
% "ATM" cell over full duplex gigabit ethernet
min_GE_RTT_quantum_ms = (ATM_cell.bit / (1000 * 1000 * 1000) + ATM_cell.bit / (1000 * 1000 * 1000) ) * 1000; % this estimate is rather a lower bound for fastpath , so search for best fits
% "ATM" cell over theoretical G.fast.vectoring (best case?)
min_GfastV_RTT_quantum_ms = (ATM_cell.bit / (500 * 1000 * 1000) + ATM_cell.bit / (500 * 1000 * 1000) ) * 1000; % this estimate is rather a lower bound for fastpath , so search for best fits
% the next three are 2014 extreme values fot Deutsche Telekom wired
% assume VDSL2.vectoring 100Mbit 40Mbit
min_VDSL2V_RTT_quantum_ms = (ATM_cell.bit / (100 * 1000 * 1000) + ATM_cell.bit / (40 * 1000 * 1000) ) * 1000; % this estimate is rather a lower bound for fastpath , so search for best fits
% assume ADSL2+ annex J fallback profile 2J R
max_ADSL2aJ_RTT_quantum_ms = (ATM_cell.bit / (448 * 1000) + ATM_cell.bit / (288 * 1000) ) * 1000; % this estimate is rather a lower bound for fastpath , so search for best fits
% assume ADSL2+ annex B fixed prifile dsl light 384
max_ADSL1aB_RTT_quantum_ms = (ATM_cell.bit / (384 * 1000) + ATM_cell.bit / (64 * 1000) ) * 1000; % this estimate is rather a lower bound for fastpath , so search for best fits
% the RTT should equal the average RTT increase per ATM quantum
% estimate the RTT step size
% at ADSL down 3008kbit/sec up 512kbit/sec we expect, this does not include
% processing time
if ~isempty(down_Kbit) || ~isempty(up_Kbit)
expected_RTT_quantum_ms = (ATM_cell.bit / (down_Kbit * 1000) + ATM_cell.bit / (up_Kbit * 1000) ) * 1000; % this estimate is rather a lower bound for fastpath , so search for best fits
% sm network rates are base 10 nt base 2
% expected_RTT_quantum_ms = (ATM_cell.bit / (down_Kbit * 1024) + ATM_cell.bit / (up_Kbit * 1024) ) * 1000; % this estimate is rather a lower bound for fastpath , so search for best fits
else
expected_RTT_quantum_ms = estimated_RTT_quantum_ms;
end
disp(['lower bound estimate for one ATM cell RTT based of specified up and downlink is ', num2str(expected_RTT_quantum_ms), ' ms.']);
disp(['estimate for one ATM cell RTT based on linear fit of the ping sweep data is ', num2str(estimated_RTT_quantum_ms), ' ms.']);
% lets search from expected_RTT_quantum_ms to 1.5 * expected_RTT_quantum_ms
% in steps of expected_RTT_quantum_ms / 100
% to allow for interleaved ATM setups increase the search space up to 32
% times best fastpath RTT estimate, 64 interleave seems to add 25ms to the
% per packet latency, but not to the per quantum delta t, so revisit this
% TODO check with high interleave ATM data (if available)
min_search_RTT_ms = expected_RTT_quantum_ms / 2; % in case the initial estimates are only in the ballpark
search_RTT_steps_ms = expected_RTT_quantum_ms / 100;
max_search_RTT_ms = min([(32 * expected_RTT_quantum_ms) (max_ADSL1aB_RTT_quantum_ms * 1.5)]);
RTT_quantum_list = (min_search_RTT_ms : search_RTT_steps_ms : max_search_RTT_ms);
quantum_list = (1 : 1 : quantum.byte);
% BRUTE FORCE search of best fitting stair...
differences = zeros([length(RTT_quantum_list) length(quantum_list)]);
cumulative_differences = differences;
disp('Starting brute-force search for optimal stair fit, might take a while...');
if (isoctave)
fflush(stdout); % make octave display intermediate output...
end
all_stairs = zeros([length(RTT_quantum_list) length(quantum_list) length(per_size.data(1:last_non_fragmented_pingsize, per_size.cols.(use_measure)))]);
for i_RTT_quant = 1 : length(RTT_quantum_list)
cur_RTT_quant = RTT_quantum_list(i_RTT_quant);
for i_quant = 1 : quantum.byte
[differences(i_RTT_quant, i_quant), cumulative_differences(i_RTT_quant, i_quant), all_stairs(i_RTT_quant, i_quant, :)] = ...
get_difference_between_data_and_stair( per_size.data(1:last_non_fragmented_pingsize, per_size.cols.size), per_size.data(1:last_non_fragmented_pingsize, per_size.cols.(use_measure)), ...
quantum_list(i_quant), quantum.byte, 0, cur_RTT_quant );
end
end
% for the initial test DSL set the best x_offset was 21, corresponding to 32 bytes overhead before the IP header.
[min_cum_diff, min_cum_diff_idx] = min(cumulative_differences(:));
[min_cum_diff_row_idx, min_cum_diff_col_idx] = ind2sub(size(cumulative_differences),min_cum_diff_idx);
best_difference = differences(min_cum_diff_row_idx, min_cum_diff_col_idx);
disp(['Best staircase fit cumulative difference is: ', num2str(cumulative_differences(min_cum_diff_row_idx, min_cum_diff_col_idx))]);
disp(['Best linear fit cumulative difference is: ', num2str(linear_cumulative_difference)]);
% judge the quantization
if (cumulative_differences(min_cum_diff_row_idx, min_cum_diff_col_idx) < linear_cumulative_difference)
% stair fits better than line
quant_string = ['Quantized ATM carrier LIKELY (cummulative residual: stair fit ', num2str(cumulative_differences(min_cum_diff_row_idx, min_cum_diff_col_idx)), ' linear fit ', num2str(linear_cumulative_difference)];
else
quant_string = ['Quantized ATM carrier UNLIKELY (cummulative residual: stair fit ', num2str(cumulative_differences(min_cum_diff_row_idx, min_cum_diff_col_idx)), ' linear fit ', num2str(linear_cumulative_difference)];
end
disp(quant_string);
disp(['remaining ATM cell length after ICMP header is ', num2str(quantum_list(min_cum_diff_col_idx)), ' bytes.']);
disp(['ICMP RTT of a single ATM cell is ', num2str(RTT_quantum_list(min_cum_diff_row_idx)), ' ms.']);
% as first approximation use the ATM cell offset and known offsets (ICMP
% IPv4 min_ping_size) to estimate the number of cells used for per packet
% overhead
% this assumes that no ATM related overhead is >= ATM cell size
% -1 to account for matlab 1 based indices
% what is the offset in the 2nd ATM cell
n_bytes_overhead_2nd_cell = quantum.byte - (quantum_list(min_cum_diff_col_idx) - 1); % just assume we can not fit all overhead into one cell...
% what is the known overhead size for the first data point:
tmp_idx = find(~isnan(per_size.data(:, per_size.cols.mean)));
known_overhead_first_ping_size = tmp_idx(1);
%pre_IP_overhead = quantum.byte + (n_bytes_overhead_2nd_cell - known_overhead); % ths is the one we are after in the end
pre_IP_overhead = quantum.byte + (n_bytes_overhead_2nd_cell - known_overhead_first_ping_size); % ths is the one we are after in the end
disp(' ');
disp(['Estimated overhead preceding the IP header: ', num2str(pre_IP_overhead), ' bytes']);
res_fh = figure('Name', 'Comparing ping data with');
hold on
legend_str = {'ping data', 'fitted stair', 'fitted line'};
plot(per_size.data(1:last_non_fragmented_pingsize, per_size.cols.size), per_size.data(1:last_non_fragmented_pingsize, per_size.cols.(use_measure)), 'Color', [1 0 0]);
plot(per_size.data(1:last_non_fragmented_pingsize, per_size.cols.size), squeeze(all_stairs(min_cum_diff_row_idx, min_cum_diff_col_idx, :)) + best_difference, 'Color', [0 1 0]);
fitted_line = polyval(p, per_size.data(1:last_non_fragmented_pingsize, per_size.cols.size), S);
plot(per_size.data(1:last_non_fragmented_pingsize, per_size.cols.size), fitted_line, 'Color', [0 0 1]);
title({['Estimated RTT per quantum: ', num2str(RTT_quantum_list(min_cum_diff_row_idx)), ' ms; ICMP data offset in quantum ', num2str(quantum_list(min_cum_diff_col_idx)), ' bytes'];...
['Estimated overhead preceding the IP header: ', num2str(pre_IP_overhead), ' bytes'];...
quant_string});
xlabel('Approximate packet size [bytes]');
ylabel('ICMP round trip times (ping RTT) [ms]');
if (isoctave)
legend(legend_str, 'Location', 'NorthWest');
else
%annotation('textbox', [0.0 0.95 1.0 .05], 'String', ['Estimated overhead preceding the IP header: ', num2str(pre_IP_overhead), ' bytes'], 'FontSize', 9, 'Interpreter', 'none', 'Color', [1 0 0], 'LineStyle', 'none');
legend(legend_str, 'Interpreter', 'none', 'Location', 'NorthWest');
end
hold off
%write_out_figure(res_fh, fullfile(sweep_dir, [sweep_name, '_results.pdf'));
if ~isempty(plot_output_format)
write_out_figure(res_fh, fullfile(sweep_dir, [sweep_name, '_results.', plot_output_format]));
end
% if we have an ATM carrier pre_IP_overhead must be >= 8 byte, otherwise we
% probably are missing an ATM cell full of overhead
if (pre_IP_overhead < 8)
pre_IP_overhead = pre_IP_overhead + 48;
disp(['The ATM overhead can not really be smaller than 8 bytes,', sprintf('\n'),...
'so it seems we have more than one ATM cell worth of overhead', sprintf('\n'),...
'Adjusted estimated overhead preceding the IP header: ', num2str(pre_IP_overhead)]);
end
% use http://ace-host.stuart.id.au/russell/files/tc/tc-atm/ to present the
% most likely ATM encapsulation for a given overhead and present a recommendation
% for the tc stab invocation
display_protocol_stack_information(pre_IP_overhead);
% now turn this into tc-stab recommendations:
disp(['Add the following to both the egress root qdisc:']);
% disp(' ');
disp(['A) Assuming the router connects over ethernet to the DSL-modem:']);
disp(['stab mtu 2048 tsize 128 overhead ', num2str(pre_IP_overhead), ' linklayer atm']); % currently tc stab does not account for the ethernet header
% disp(['stab mtu 2048 tsize 128 overhead ', num2str(pre_IP_overhead - offsets.ethernet), ' linklayer atm']);
% disp(' ');
% disp(['B) Assuming the router connects via PPP and non-ethernet to the modem:']);
% disp(['stab mtu 2048 tsize 128 overhead ', num2str(pre_IP_overhead), ' linklayer atm']);
disp(' ');
% on ingress do not exclude the the ethernet header?
disp(['Add the following to both the ingress root qdisc:']);
disp(' ');
disp(['A) Assuming the router connects over ethernet to the DSL-modem:']);
disp(['stab mtu 2048 tsize 128 overhead ', num2str(pre_IP_overhead), ' linklayer atm']);
disp(' ');
if ~(isoctave)
timestamps.(mfilename).end = toc(timestamps.(mfilename).start);
disp([mfilename, ' took: ', num2str(timestamps.(mfilename).end), ' seconds.']);
else
toc
end
% and now the other end of the data, what is the max MTU for the link and
% what is the best ATM cell aligned MTU
disp('Done...');
return
end
function [ ping_data ] = parse_ping_output( ping_log_fqn )
%PARSE_PING_OUTPUT read the putput of a ping run/sweep
% for further processing
% TODO:
% use a faster parser, using srtok is quite expensive
%
% This currently handles maxosx/linux ping, windows hrping and busybox ping
% windows hrping:
% C:\space\bin\hrping-v506>hrping -n 1 -l 16 www.heise.de
% This is hrPING v5.06.1143 by cFos Software GmbH -- http://www.cfos.de
%
% Source address is 134.2.91.182; using ICMP echo-request, ID=1883
% Pinging www.heise.de [193.99.144.85]
% with 16 bytes data (44 bytes IP):
%
% From 193.99.144.85: bytes=44 seq=0001 TTL=245 ID=b9e6 time=5.031ms
%
% Packets: sent=1, rcvd=1, error=0, lost=0 (0.0% loss) in 0.005031 sec
% RTTs in ms: min/avg/max/dev: 5.031 / 5.031 / 5.031 / 0.000
% Bandwidth in kbytes/sec: sent=8.745, rcvd=8.745
%
%macosx ping:
% hms-beagle:~ moeller$ ping -c 1 -s 16 www.heise.de
% PING www.heise.de (193.99.144.85): 16 data bytes
% 24 bytes from 193.99.144.85: icmp_seq=0 ttl=245 time=4.967 ms
%
% --- www.heise.de ping statistics ---
% 1 packets transmitted, 1 packets received, 0.0% packet loss
% round-trip min/avg/max/stddev = 4.967/4.967/4.967/0.000 ms
if ~(isoctave)
timestamps.parse_ping_output.start = tic;
else
tic();
end
verbose = 0;
n_rows_to_grow_table_by = 10000; % grow table increment to avoid excessive memory copy ops
ping_data = [];
cur_sweep_fd = fopen(ping_log_fqn, 'r');
if (cur_sweep_fd == -1)
disp(['Could not open ', ping_log_fqn, '.']);
if isempty(dir(ping_log_fqn))
disp('Reason: file does not seem to exist at the given directory...')
end
return
end
ping_data.header = {'size', 'icmp_seq', 'ttl', 'time'};
ping_data.field_names_list = {'bytes', 'size', 'icmp_seq', 'seq', 'TTL', 'ttl', 'time'};
ping_data.header = {'size', 'time'}; % save half the size...
ping_data.field_names_list = {'bytes', 'size', 'time'};
ping_data.cols = get_column_name_indices(ping_data.header);
ping_data.data = zeros([n_rows_to_grow_table_by, length(ping_data.header)]);
cur_data_lines = 0;
cur_lines = 0;
% skip the first line
% PING netblock-75-79-143-1.dslextreme.com (75.79.143.1): (16 ... 1000)
% data bytes
header_line = fgetl(cur_sweep_fd);
% detect hrping logs, as they data lines look slightly different from unix
% ping
% This is hrPING v5.06.1143 by cFos Software GmbH -- http://www.cfos.de
is_hrping = 0;
% skip empty lines at the start of the file
while isempty(header_line)
header_line = fgetl(cur_sweep_fd);
end
if (length(header_line) > 14) && strcmp('This is hrPING ', header_line(1:15))
is_hrping = 1;
end
while ~feof(cur_sweep_fd)
% grow the data table if need be
if (size(ping_data.data, 1) == cur_data_lines)
if (verbose)
disp('Growing ping data table...');
end
ping_data.data = [ping_data.data; zeros([n_rows_to_grow_table_by, length(ping_data.header)])];
end
cur_line = fgetl(cur_sweep_fd);
if ~(mod(cur_lines, 1000))
disp([num2str(cur_lines +1), ' lines parsed...']);
if (isoctave)
fflush(stdout); % make octave display intermediate output...
end
end
cur_lines = cur_lines + 1;
[first_element, remainder] = strtok(cur_line);
first_element_as_number = str2double(first_element);
% skip empty & irrelevant lines early
if isempty(first_element) || strcmp('Request', first_element) || strcmp('---', first_element) ...
|| strcmp('Source', first_element) || strcmp('Pinging', first_element) || strcmp('with', first_element) || strcmp('Packets:', first_element) ...
|| strcmp('RTTs', first_element) || strcmp('Bandwidth', first_element)
% skip empty lines explicitly
continue;
end
% the following will not work for merged ping
%if strmatch('---', first_element)
% %we reached the end of sweeps
% break;
%end
% now read in the data
%unix ping: 30 bytes from 75.79.143.1: icmp_seq=339 ttl=63 time=14.771 ms
%hrping: From 193.99.144.85: bytes=44 seq=0001 TTL=245 ID=b9e6 time=5.031ms
if (~isempty(first_element_as_number) && ~isnan(first_element_as_number)) || (strcmp('From', first_element) && (is_hrping))
% get the next element
[tmp_next_item, tmp_remainder] = strtok(remainder);
if strcmp(tmp_next_item, 'bytes') || is_hrping
if ~(mod(cur_data_lines, 1000))
disp(['Milestone ', num2str(cur_data_lines +1), ' ping packets reached...']);
if (isoctave)
fflush(stdout); % make octave display intermediate output...
end
end
cur_data_lines = cur_data_lines + 1;
% size of the ICMP package
ping_data.data(cur_data_lines, ping_data.cols.size) = first_element_as_number; % attention for hrping this is a NaN...
% now process the remainder
while ~isempty(remainder)
[next_item, remainder] = strtok(remainder);
equality_pos = strfind(next_item, '=');
% data items are name+value pairs
if ~isempty(equality_pos);
cur_key = next_item(1: equality_pos - 1);
cur_value = str2double(next_item(equality_pos + 1: end));
%hr_ping reports time as time=5.031ms insted of unix's
%time=14.771 ms, so handle the ms by hand
if (is_hrping) && strcmp('ms', next_item(end-1:end))
cur_value = str2double(next_item(equality_pos + 1: end-2));
end
if (ismember(cur_key, ping_data.field_names_list))
switch cur_key
% busybox ping and macosx ping return different key names
case {'seq', 'icmp_seq'}
ping_data.data(cur_data_lines, ping_data.cols.icmp_seq) = cur_value;
case {'ttl', 'TTL'}
ping_data.data(cur_data_lines, ping_data.cols.ttl) = cur_value;
case 'time'
ping_data.data(cur_data_lines, ping_data.cols.time) = cur_value;
case 'bytes'
ping_data.data(cur_data_lines, ping_data.cols.size) = cur_value - 20 - 8 + 8; %hrping reports the size as bytes=44, to get from unix ping size to hrping bytes subtract 28 (hrping reports IP size) and add 8 as unix ping includes the ICMP size
end
end
end
end
else
% skip this line
if (verbose)
disp(['Skipping: ', cur_line]);
end
end
else
if (verbose)
disp(['Ping output: ', cur_line, ' not handled yet...']);
end
end
end
% remove empty lines
if (size(ping_data.data, 1) > cur_data_lines)
ping_data.data = ping_data.data(1:cur_data_lines, :);
end
disp(['Found ', num2str(cur_data_lines), ' ping packets in ', ping_log_fqn]);
% clean up
fclose(cur_sweep_fd);
if ~(isoctave)
timestamps.parse_ping_output.end = toc(timestamps.parse_ping_output.start);
disp(['Parsing took: ', num2str(timestamps.parse_ping_output.end), ' seconds.']);
else
toc
end
return
end
function [ difference , cumulative_difference, stair_y ] = get_difference_between_data_and_stair( data_x, data_y, x_size, stair_x_step_size, y_offset, stair_y_step_size )
% 130619sm: handle NaNs in data_y (marker for missing ping sizes)
% x_size is the flat part of the first stair, that is quantum minus the
% offset
% TODO: understand the offset issue and simplify this function
% extrapolate the stair towards x = 0 again
debug = 0;
difference = [];
tmp_idx = find(~isnan(data_y));
x_start_val_idx = tmp_idx(1);
x_start_val = data_x(x_start_val_idx);
x_end_val = data_x(end); % data_x is sorted...
% construct stair
stair_x = data_x;
proto_stair_y = zeros([x_end_val 1]); % we need the final value in
% make sure the x_size values do not exceed the step size...
if (x_size > stair_x_step_size)
if mod(x_size, stair_x_step_size) == 0
x_size = stair_x_step_size;
else
x_size = mod(x_size, stair_x_step_size);
end
end
%stair_y_step_idx = (x_start_val + x_size : stair_x_step_size : x_end_val);
%% we really want steps registered to x_start_val
%stair_y_step_idx = (mod(x_start_val, stair_x_step_size) + x_size : stair_x_step_size : x_end_val);
stair_y_step_idx = (mod(x_start_val + x_size, stair_x_step_size) : stair_x_step_size : x_end_val);
if stair_y_step_idx(1) == 0
stair_y_step_idx(1) = [];
end
proto_stair_y(stair_y_step_idx) = stair_y_step_size;
stair_y = cumsum(proto_stair_y);
if (debug)
figure
hold on;
title(['x offset used: ', num2str(x_size), ' with quantum ', num2str(stair_x_step_size)]);
plot(data_x, data_y, 'Color', [0 1 0]);
plot(stair_x, stair_y, 'Color', [1 0 0]);
hold off;
end
% missing ping sizes are filled with NaNs, so skip those
notnan_idx = find(~isnan(data_y));
% estimate the best y_offset for the stair
difference = sum(abs(data_y(notnan_idx) - stair_y(notnan_idx))) / length(data_y(notnan_idx));
% calculate the cumulative difference between stair and data...
cumulative_difference = sum(abs(data_y(notnan_idx) - (stair_y(notnan_idx) + difference)));
return
end
% function [ stair ] = build_stair(x_vector, x_size, stair_x_step_size, y_offset, stair_y_step_size )
% stair = [];
%
% return
% end
function [columnnames_struct, n_fields] = get_column_name_indices(name_list)
% return a structure with each field for each member if the name_list cell
% array, giving the position in the name_list, then the columnnames_struct
% can serve as to address the columns, so the functions assitgning values
% to the columns do not have to care too much about the positions, and it
% becomes easy to add fields.
n_fields = length(name_list);
for i_col = 1 : length(name_list)
cur_name = name_list{i_col};
columnnames_struct.(cur_name) = i_col;
end
return
end
function [ci_halfwidth_vector] = calc_cihw(std_vector, n, alpha)
%calc_ci : calculate the half width of the confidence interval (for 1 - alpha)
% the t_value lookup depends on alpha and the samplesize n; the relevant
% calculation of the degree of freedom is performed inside calc_t_val.
% ci_halfwidth = t_val(alpha, n-1) * std / sqrt(n)
% Each groups CI ranges from mean - ci_halfwidth to mean - ci_halfwidth, so
% the calling function has to perform this calculation...
%
% INPUTS:
% std_vector: vector containing the standard deviations of all requested
% groups
% n: number of samples in each group, if the groups have different
% samplesizes, specify each group's sample size in a vector
% alpha: the desired maximal uncertainty/error in the range of [0, 1]
% OUTPUT:
% ci_halfwidth_vector: vector containing the confidence intervals half width
% for each group
% calc_t_val return one sided t-values, for the desired two sidedness one has
% to half the alpha for the table lookup
cur_alpha = alpha / 2;
% if n is scalar use same n for all elements of std_vec
if isscalar(n)
t_ci = calc_t_val(cur_alpha, n);
ci_halfwidth_vector = std_vector * t_ci / sqrt(n);
% if n is a vector, prepare a matching vector of t_ci values
elseif isvector(n)
t_ci_vector = n;
% this is probably ugly, but calc_t_val only accepts scalars.
for i_pos = 1 : length(n)
t_ci_vector(i_pos) = calc_t_val(cur_alpha, n(i_pos));
end
ci_halfwidth_vector = std_vector .* t_ci_vector ./ sqrt(n);
end
return
end
%-----------------------------------------------------------------------------
function [t_val] = calc_t_val(alpha, n)
% the t value for the given alpha and n
% so call with the n of the sample, not with degres of freedom
% see http://mathworld.wolfram.com/Studentst-Distribution.html for formulas
% return values follow Bortz, Statistik fuer Sozialwissenschaftler, Springer
% 1999, table D page 775. That is it returns one sided t-values.
% primary author S. Moeller
% TODO:
% sidedness of t-value???
% basic error checking
if nargin < 2
error('alpha and n have to be specified...');
end
% probabilty of error
tmp_alpha = alpha ;%/ 2;
if (tmp_alpha < 0) || (tmp_alpha > 1)
msgbox('alpha has to be taken from [0, 1]...');
t_val = NaN;
return
end
if tmp_alpha == 0
t_val = -Inf;
return
elseif tmp_alpha ==1
t_val = Inf;
return
end
% degree of freedom
df = n - 1;
if df < 1
%msgbox('The n has to be >= 2 (=> df >= 1)...');
% disp('The n has to be >= 2 (=> df >= 1)...');
t_val = NaN;
return
end
% only calculate each (alpha, df) combination once, store the results
persistent t_val_array;
% create the t_val_array
if ~iscell(t_val_array)
t_val_array = {[NaN;NaN]};
end
% search for the (alpha, df) tupel, avoid calculation if already stored
if iscell(t_val_array)
% cell array of 2d arrays containing alpha / t_val pairs
if df <= length(t_val_array)
% test whether the required alpha, t_val tupel exists
if ~isempty(t_val_array{df})
% search for alpha
tmp_array = t_val_array{df};
alpha_index = find(tmp_array(1,:) == tmp_alpha);
if any(alpha_index)
t_val = tmp_array(2, alpha_index);
return
end
end
else
% grow t_val_array to length of n
missing_cols = df - length(t_val_array);
for i_missing_cols = 1: missing_cols
t_val_array{end + 1} = [NaN;NaN];
end
end
end
% check the sign
cdf_sign = 1;
if (1 - tmp_alpha) == 0.5
t_val = t_cdf;
elseif (1 - tmp_alpha) < 0.5 % the t-cdf is point symmetric around (0, 0.5)
cdf_sign = -1;
tmp_alpha = 1 - tmp_alpha; % this will be undone later
end
% init some variables
n_iterations = 0;
delta_t = 1;
last_alpha = 1;
higher_t = 50;
lower_t = 0;
% find a t-value pair around the desired alpha value
while norm_students_cdf(higher_t, df) < (1 - tmp_alpha);
lower_t = higher_t;
higher_t = higher_t * 2;
end
% search the t value for the given alpha...
while (n_iterations < 1000) && (abs(delta_t) >= 0.0001)
n_iterations = n_iterations + 1;
% get the test_t (TODO linear interpolation)
% higher_alpha = norm_students_cdf(higher_t, df);
% lower_alpha = norm_students_cdf(lower_t, df);
test_t = lower_t + ((higher_t - lower_t) / 2);
cur_alpha = norm_students_cdf(test_t, df);
% just in case we hit the right t spot on...
if cur_alpha == (1 - tmp_alpha)
t_crit = test_t;
break;
% probably we have to search for the right t
elseif cur_alpha < (1 - tmp_alpha)
% test_t is the new lower_t
lower_t = test_t;
%higher_t = higher_t; % this stays as is...
elseif cur_alpha > (1 - tmp_alpha)
%
%lower_t = lower_t; % this stays as is...
higher_t = test_t;
end
delta_t = higher_t - lower_t;
last_alpha = cur_alpha;
end
t_crit = test_t;
% set the return value, correct for negative t values
t_val = t_crit * cdf_sign;
if cdf_sign < 0
tmp_alpha = 1 - tmp_alpha;
end
% store the alpha, n, t_val tupel in t_val_array
pos = size(t_val_array{df}, 2);
t_val_array{df}(1, (pos + 1)) = tmp_alpha;
t_val_array{df}(2, (pos + 1)) = t_val;
return
end
%-----------------------------------------------------------------------------
function [scaled_cdf] = norm_students_cdf(t, df)
% calculate the cdf of students distribution for a given degree of freedom df,
% and all given values of t, then normalize the result
% the extreme values depend on the values of df!!!
% get min and max by calculating values for extrem t-values (e.g. -10000000,
% 10000000)
extreme_cdf_vals = students_cdf([-10000000, 10000000], df);
tmp_cdf = students_cdf(t, df);
scaled_cdf = (tmp_cdf - extreme_cdf_vals(1)) /...
(extreme_cdf_vals(2) - extreme_cdf_vals(1));
return
end
%-----------------------------------------------------------------------------
function [cdf_value_array] = students_cdf(t_value_array, df)
%students_cdf: calc the cumulative density function for a t-distribution
% Calculate the CDF value for each value t of the input array
% see http://mathworld.wolfram.com/Studentst-Distribution.html for formulas
% INPUTS: t_value_array: array containing the t values for which to
% calculate the cdf
% df: degree of freedom; equals n - 1 for the t-distribution
cdf_value_array = 0.5 +...
((betainc(1, 0.5 * df, 0.5) / beta(0.5 * df, 0.5)) - ...
(betainc((df ./ (df + t_value_array.^2)), 0.5 * df, 0.5) /...